| 研究生: |
楊凱博 Yang, Kai-Po |
|---|---|
| 論文名稱: |
具高長寬比與光散射強化性質之氧化鎢奈米材料及其電致變色元件 Tungsten Oxide Based Electrochromic Devices with High-Aspect-Ratio Nanostructure and Light Scattering Enhancement |
| 指導教授: |
郭昌恕
Kuo, Chang-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 電致變色 、電化學沉積 、電紡絲 、二氧化鈦 、氧化鎢 、聚苯胺 、光散射 |
| 外文關鍵詞: | Electrochromic, Electrodeposition, Electrospinning, Nanofibers, Titanium oxide, Tungsten oxide, Polyaniline, Light scattering |
| 相關次數: | 點閱:128 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鎢薄膜已經成功地利用電化學沉積方法均勻地沉積於二氧化鈦的奈米電紡絲上。藉由高分子輔助配方製備的二氧化鈦奈米纖維具有隨機分佈,奈米尺度下的光散射行為。氧化鎢鍍膜層可作為陰極的電致變色材料,經過電化學反應的還原過程產生顏色上的變化。核殼結構狀的二氧化鈦-氧化鎢奈米複合纖維展示出由光散射特性而提升的高光學對比的性質。而預期中光散射特性能夠延伸光線的行走路徑,增強材料對光的吸收量和著色效率,並且纖維之間的開放區域能提升鋰離子載體在電解液中的擴散效率。電紡絲中,散射峰值和纖維的直徑大小有很強的相關性,將二氧化鈦-氧化鎢奈米纖維直徑控制在300至700 nm左右在可見光區域有最大的散射效果。以奈米纖維為基礎的電致變色元件,其相對應的散射峰強度和對應直徑分佈經過仔細的研究。為了組合出合適的互補式電致變色元件,此研究中另外展示聚苯胺作為陽極層的變色材料。本研究中,同時也仔細地審視了各種材料的相關結構特性,電致變色性質以及光散射行為提升的變色效應。
Homogeneous tungsten oxide were successfully electrodeposited on the electrospun titania nanofibers as the conformal outer layers. Randomly deposited titania nanofibers from the polymer-assisted electrospinning were utilized as the nano-scaled scaffolds with light scattering behavior. Tungsten oxide outer layers were introduced as the cathodic electrochromic material that undergoes the color change by an electrochemical redox reaction. Obtained TiO2/WO3 core-sheath nanofibers exhibited the high optical density as a result from the intensive light scattering. While the light scattering prolongs the light path length, the enhanced absorption and the coloration efficiency were expected. Moreover, the open spacing among nanofibers encouraged the diffusion of Lithium ion carriers in the electrolyte. Preferred scattering bands revealed the strong correlation with the nanofiber diameter. And, TiO2/WO3 core-sheath nanofibers with diameters of 300 to 700 nm were found to have the maximized scattering in the visible region. Nanofiber-based electrochromic devices were carefully investigated in terms of the preferred scattering wavelength and the fiber deposition thickness. Nanostructured polyaniline was also introduced as the anodic electrochromic materials in order to assemble the complementary electrochromic device. Material characterizations, preferred scattering behavior, and the enhanced elctrochromic performance were investigated in this research work.
1. Bange, K., Colouration of tungsten oxide films: A model for optically active coatings. Sol. Energy Mater. Sol. Cells 1999, 58 (1), 1-131.
2. Rosseinsky, D. R.; Mortimer, R. J., Electrochromic systems and the prospects for devices. Adv. Mater. 2001, 13 (11), 783-793.
3. Kalagi, S. S.; Mali, S. S.; Dalavi, D. S.; Inamdar, A. I.; Im, H.; Patil, P. S., Limitations of dual and complementary inorganic-organic electrochromic device for smart window application and its colorimetric analysis. Synth. Met. 2011, 161 (11-12), 1105-1112.
4. Somani, P. R.; Radhakrishnan, S., Electrochromic materials and devices: present and future. Mater. Chem. Phys. 2003, 77 (1), 117-133.
5. Kalyanasundaram, K.; Gratzel, M., Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev. 1998, 177, 347-414.
6. Porter, W. W.; Vaid, T. P.; Rheingold, A. L., Synthesis and characterization of a highly reducing neutral "extended viologen" and the isostructural hydrocarbon 4,4 '-Di-n-octyl-p-quaterphenyl. J. Am. Chem. Soc. 2005, 127 (47), 16559-16566.
7. Georg, A.; Graf, W.; Wittwer, V., Switchable windows with tungsten oxide. Vacuum 2008, 82 (7), 730-735.
8. Granqvist, C. G.; Avendano, E.; Azens, A., Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films 2003, 442 (1-2), 201-211.
9. Zhang, L. Y.; Xiong, S. X.; Ma, J.; Lu, X. H., A complementary electrochromic device based on polyaniline-tethered polyhedral oligomeric silsesquioxane and tungsten oxide. Sol. Energy Mater. Sol. Cells 2009, 93 (5), 625-629.
10. Xiong, S. X.; Ma, J.; Lu, X. H., A complementary electrochromic device based on polyaniline tethered polyhedral oligomeric silsesquioxane and poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonic acid). Sol. Energy Mater. Sol. Cells 2009, 93 (12), 2113-2117.
11. Lin, T. H.; Ho, K. C., A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene). Sol. Energy Mater. Sol. Cells 2006, 90 (4), 506-520.
12. Jelle, B. P.; Hagen, G., Correlation between light absorption and electric charge in solid state electrochromic windows. J. Appl. Electrochem. 1999, 29 (9), 1103-1110.
13. Zheng, H. D.; Ou, J. Z.; Strano, M. S.; Kaner, R. B.; Mitchell, A.; Kalantar-Zadeh, K., Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications. Adv. Funct. Mater. 2011, 21 (12), 2175-2196.
14. Granqvist, C. G., Electrochromic tungsten oxide films: Review of progress 1993-1998. Sol. Energy Mater. Sol. Cells 2000, 60 (3), 201-262.
15. Brazier, A.; Appetecchi, G. B.; Passerini, S.; Vuk, A. S.; Orel, B.; Donsanti, F.; Decker, F., Ionic liquids in electrochromic devices. Electrochim. Acta 2007, 52 (14), 4792-4797.
16. Lee, S. H.; Cheong, H. M.; Zhang, J. G.; Mascarenhas, A.; Benson, D. K.; Deb, S. K., Electrochromic mechanism in a-WO3-y thin films. Appl. Phys. Lett. 1999, 74 (2), 242-244.
17. Schirmer, O. F.; Wittwer, V.; Baur, G., DEPENDENCE OF WO3 ELECTROCHROMIC ABSORPTION ON CRYSTALLINITY. J. Electrochem. Soc. 1976, 123 (8), C258-C258.
18. Deb, S. K., OPTICAL AND PHOTOELECTRIC PROPERTIES AND COLOR CENTERS IN THIN-FILMS OF TUNGSTEN OXIDE. Philosophical Magazine 1973, 27 (4), 801-822.
19. J.M. Honig, i. S. T. E., Electrodes of Conductive Metallic Oxides. Elsevier, Amsterdam 1980.
20. Granqvist, C. G., Handbook of Inorganic Electrochromic Materials. Elesevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo 1995.
21. Nguyen, T. A.; Jun, T. S.; Rashid, M.; Kim, Y. S., Synthesis of mesoporous tungsten oxide nanofibers using the electrospinning method. Mater. Lett. 2011, 65 (17-18), 2823-2825.
22. Wang, G.; Ji, Y.; Huang, X. R.; Yang, X. Q.; Gouma, P. I.; Dudley, M., Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B 2006, 110 (47), 23777-23782.
23. Shim, H. S.; Kim, J. W.; Sung, Y. E.; Kim, W. B., Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Sol. Energy Mater. Sol. Cells 2009, 93 (12), 2062-2068.
24. Gospodinova, N.; Terlemezyan, L., Conducting polymers prepared by oxidative polymerization: Polyaniline. Prog. Polymer Sci. 1998, 23 (8), 1443-1484.
25. Chiou, N. R.; Epstein, A. J., Polyaniline nanofibers prepared by dilute polymerization. Adv. Mater. 2005, 17 (13), 1679-1683.
26. Zhang, H. B.; Wang, J. X.; Wang, Z.; Zhang, F. B.; Wang, S. C., Electrodeposition of polyaniline nanostructures: A lamellar structure. Synth. Met. 2009, 159 (3-4), 277-281.
27. Huang, J. X.; Virji, S.; Weiller, B. H.; Kaner, R. B., Polyaniline nanofibers: Facile synthesis and chemical sensors. J. Am. Chem. Soc. 2003, 125 (2), 314-315.
28. Gupta, V.; Miura, N., Electrochemically deposited polyaniline nanowire's network - A high-performance electrode material for redox supercapacitor. Electrochem. Solid State Lett. 2005, 8 (12), A630-A632.
29. Karami, H.; Asadi, M. G.; Mansoori, M., Pulse electropolymerization and the characterization of polyaniline nanofibers. Electrochim. Acta 2012, 61, 154-164.
30. Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R., Electrochromic organic and polymeric materials for display applications. Displays 2006, 27 (1), 2-18.
31. Yu, X. F.; Li, Y. X.; Zhu, N. F.; Yang, Q. B.; Kalantar-zadeh, K., A polyaniline nanofibre electrode and its application in a self-powered photoelectrochromic cell. Nanotechnology 2007, 18 (1).
32. Carp, O.; Huisman, C. L.; Reller, A., Photoinduced reactivity of titanium dioxide. Progress in Solid State Chem. 2004, 32 (1-2), 33-34.
33. Shangguan, W.; Yoshida, A.; Chen, M., Physicochemical properties and photocatalytic hydrogen evolution of TiO2 films prepared by sol-gel processes. Sol. Energy Mater. Sol. Cells 2003, 80 (4), 433-439.
34. Ovenstone, J.; Yanagisawa, K., Effect of Hydrothermal Treatment of Amorphous Titania on the Phase Change from Anatase to Rutile during Calcination. Chem. Mater. 1999, 11 (10), 2770-2774.
35. Tzung-Ying, S., Electrospun Titanium Dioxide Nanofibers for Hydrogen Production by UV-Induced Water Splitting. NCKU Master Thesis 2007.
36. Li, F. B.; Li, X. Z., Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Appl. Catalysis a-General 2002, 228 (1-2), 15-27.
37. Feng, B.; Weng, J.; Yang, B. C.; Qu, S. X.; Zhang, X. D., Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 2003, 24 (25), 4663-4670.
38. Yoko, T.; Hu, L.; Kozuka, H.; Sakka, S., Photoelectrochemical properties of TiO2 coating films prepared using different solvents by the sol-gel method. Thin Solid Films 1996, 283 (1-2), 188.
39. Adam, D., A fine set of threads. Nature 2001, 411 (6835), 236-236.
40. Dzenis, Y., MATERIAL SCIENCE: Spinning Continuous Fibers for Nanotechnology. Science 2004, 304 (5679), 1917-1919.
41. Huang, Z.-M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci. Tech. 2003, 63 (15), 2223-2253.
42. Formhals, A., Process and Apparatus for Preparing Artificial Threads. US patent 1934, 1, 975,504.
43. Taylor, G., Electrically Driven Jets. Proceedings of Royal Society of London A: Mathematical and Physical Sciences 1969, 313, 453.
44. MacIas, M.; Chacko, A.; Ferraris, J. P.; Balkus Jr, K. J., Electrospun mesoporous metal oxide fibers. Micro. Mesop. Mater. 2005, 86 (1-3), 1-13.
45. Li, D.; Wang, Y.; Xia, Y., Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett. 2003, 3 (8), 1167-1171.
46. Li, D.; Xia, Y., Fabrication of Titania Nanofibers by Electrospinning. Nano Lett. 2003, 3 (4), 555-560.
47. Larsen, G.; Velarde-Ortiz, R.; Minchow, K.; Barrero, A.; Loscertales, I. G., A Method for Making Inorganic and Hybrid (Organic/Inorganic) Fibers and Vesicles with Diameters in the Submicrometer and Micrometer Range via Sol-Gel Chemistry and Electrically Forced Liquid Jets. J. Am. Chem. Soc. 2003, 125 (5), 1154-1155.
48. Kataphinan, W.; Teye-Mensah, R.; Evans, E. A.; Ramsier, R. D.; Reneker, D. H.; Smith, D. J. In High-temperature fiber matrices: Electrospinning and rare-earth modification, Papers from the 49th International Symposium of the American Vacuum Society, Denver, Colorado (USA), AVS: Denver, Colorado (USA), 2003; 1574-1578.
49. Sung-Seen, C.; Seung Goo, L.; Seung Soon, I.; Seong Hun, K.; Joo, Y. L., Silica nanofibers from electrospinning/sol-gel process. J. Mater. Sci. Lett. 2003, 22 (12), 891-893.
50. Wang, Y.; Furlan, R.; Ramos, I.; Santiago-Aviles, J. J., Synthesis and characterization of micro/nanoscopic Pb(Zr[sub 0.52]Ti[sub 0.48])O[sub 3] fibers by electrospinning. Appl. Phys. A: Mater. Sci. Processing 2004, 78 (7), 1043-1047.
51. Zhang, G.; Kataphinan, W.; Teye-Mensah, R.; Katta, P.; Khatri, L.; Evans, E. A.; Chase, G. G.; Ramsier, R. D.; Reneker, D. H., Electrospun nanofibers for potential space-based applications. Mater. Sci. Engineering B 2005, 116 (3), 353-358.
52. Mie, G., Contributions to the Optics of Turbid Media, Particularly of Colloidal Metal Solutions. Annals Phys. 1908, 25 (3), 377-445.
53. Ghannam, M. Y.; Abouelsaood, A. A.; Nijs, J. F., A semiquantitative model of a porous silicon layer used as a light diffuser in a thin film solar cell. Sol. Energy Mater. Sol. Cells 2000, 60 (2), 105-125.
54. Abouelsaood, A. A.; Ghannam, M. Y.; Stalmans, L.; Poortmans, J.; Nijs, J. F., Experimental testing of a random medium optical model of porous silicon for photovoltaic applications. Progress in Photovoltaics: Res. Appl. 2001, 9 (1), 15-26.
55. Seel, H.; Brendel, R., Optical absorption in crystalline Si films containing spherical voids for internal light scattering. Thin Solid Films 2004, 451-452, 608-611.
56. Zettner, J.; Thoenissen, M.; Th, H.; Brendel, R.; Schulz, M., Novel porous silicon backside light reflector for thin silicon solar cells. Progress in Photovoltaics: Research and Applications 1998, 6 (6), 423-432.
57. Rinke, T. J. B., R. B.; Bruggemann, R.; Werner, J. H., Ultrathin quasi-monocrystalline silicon films for electronic devices. . Diffusion and Defect Data--Solid State Data, Pt. B: Solid State Phenomena 1999, 67-68, 229-234.
58. Bilyalov, R.; Solanki, C. S.; Poortmans, J.; Richard, O.; Bender, H.; Kummer, M.; von Khen el, H., Crystalline silicon thin films with porous Si backside reflector. Sol. Energy Mater. Sol. Cells 2002, 72 (1-4), 221-221.
59. Nieuwenhuysen, K. V.; Duerinckx, F.; Kuzma, I.; Gestel, D. v.; Beaucarne, G.; Poortmans, J., Progress in epitaxial deposition on low-cost substrates for thin-film crystalline silicon solar cells at IMEC. J. Crys. Growth 2006, 287 (2), 438-441.
60. Bergman, D. J., The dielectric constant of a composite material--A problem in classical physics. Phys. Reports 1978, 43 (9), 377-407.
61. Thei, W., Optical properties of porous silicon. Surf. Sci. Reports 1997, 29 (3-4), 91-192.
62. Chang, Y.-H., Light Propagation and Photovoltaic Performance in P3HT/Titania Nanofiber Heterojunction Devices. NCKU Master Thesis 2010.
63. Zhang, J.; Tu, J. P.; Zhang, D.; Qiao, Y. Q.; Xia, X. H.; Wang, X. L.; Gu, C. D., Multicolor electrochromic polyaniline-WO3 hybrid thin films: One-pot molecular assembling synthesis. J. Mater. Chem. 2011, 21 (43), 17316-17324.
64. Chenthamarakshan, C. R.; de Tacconi, N. R.; Shiratsuchi, R.; Rajeshwar, K., Tungsten trioxide-titanium dioxide composite films prepared by occlusion electrosynthesis in a nickel matrix. J. Electroanalytical Chem. 2003, 553, 77-85.
65. Bayati, M. R.; Golestani-Fard, F.; Moshfegh, A. Z., Visible photodecomposition of methylene blue over micro arc oxidized WO3-loaded TiO2 nano-porous layers. Appl. Catal. A-Gen. 2010, 382 (2), 322-331.
66. Bonhote, P.; Gogniat, E.; Gratzel, M.; Ashrit, P. V., Novel electrochromic devices based on complementary nanocrystalline TiO2 and WO3 thin films. Thin Solid Films 1999, 350 (1-2), 269-275.
67. de Tacconi, N. R.; Chenthamarakshan, C. R.; Rajeshwar, K.; Pauporte, T.; Lincot, D., Pulsed electrodeposition of WO3-TiO2 composite films. Electrochem. Commu. 2003, 5 (3), 220-224.
68. de Tacconi, N. R.; Chenthamarakshan, C. R.; Wouters, K. L.; MacDonnell, F. M.; Rajeshwar, K., CompositeWO(3)-TiO2 films prepared by pulsed electrodeposition: morphological aspects and electrochromic behavior. J. Electroanalytical Chem. 2004, 566 (2), 249-256.
69. Smith, W.; Wolcott, A.; Fitzmorris, R. C.; Zhang, J. Z.; Zhao, Y. P., Quasi-core-shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting. J. Mater. Chem. 2011, 21 (29), 10792-10800.
70. Cao, L. L.; Yuan, J.; Chen, M. X.; Shangguan, W. F., Photocatalytic energy storage ability of TiO2-WO3 composite prepared by wet-chemical technique. J. Environ. Sci. 2010, 22 (3), 454-459.
71. Okuya, M.; Nakade, K.; Kaneko, S., Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2002, 70 (4), 425-435.
72. Okuya, M., Prokudina, Nina A., Mushika, Katsuya, Kaneko, Shoji, TiO2 thin films synthesized by the spray pyrolysis deposition (SPD) technique. J. Eu. Cera. Soc. 1999, 19 (6-7), 903-906.
73. Zhu, R.; Jiang, C.-Y.; Liu, X.-Z.; Liu, B.; Kumar, A.; Ramakrishna, S., Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. Appl. Phys.Lett. 2008, 93 (1), 013102-3.
74. Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. J. Am. Chem. Soc. 2001, 123 (8), 1613.
75. Christophe, J. B.; Francine, A.; Pascal, C.; Marie, J.; Frank, L.; Valery, S.; Michael, G., Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. J. Am. Cera. Soc. 1997, 80 (12), 3157-3171.
76. Pauporte, T., A simplified method for WO3 electrodeposition. J. Electrochem. Soc. 2002, 149 (11), C539-C545.
77. Chen, J. Y.; Chen, H. C.; Lin, J. N.; Kuo, C. S., Effects of polymer media on electrospun mesoporous titania nanofibers. Mater. Chem. Phys. 2008, 107 (2-3), 480-487.
78. Shie, T.-Y.; Chen, J. Y.; Kuo, C. S., Photoresponse of TiO2 nanofiber electrodes for photoelectrochemical water splitting. ACS 234th National Meeting & Exposition 2007.
79. Chen, Y. L.; Chang, Y. H.; Huang, J. L.; Chen, I.; Kuo, C. S., Light Scattering and Enhanced Photoactivities of Electrospun Titania Nanofibers. J. Phys. Chem. C 2012, 116 (5), 3857-3865.
80. Zheng, M.-p.; Gu, M.-y.; Jin, Y.-p.; Wang, H.-h.; Zu, P.-f.; Tao, P.; He, J.-b., Effects of PVP on structure of TiO2 prepared by the sol-gel process. Mater. Sci. Engineering B 2001, 87 (2), 197-201.
81. Chen, Y.-L., Light Propagation and Enhanced Photocatalytic Activities in Electrospun Titania Nanofibers. NCKU Master Thesis 2009.
82. Deepa, M.; Kar, M.; Agnihotry, S. A., Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance. Thin Solid Films 2004, 468 (1-2), 32-42.
83. Deepa, M.; Srivastava, A. K.; Singh, S.; Agnihotry, S. A., Structure-property correlation of nanostructured WO3 thin films produced by electrodeposition. J. Mater. Res. 2004, 19 (9), 2576-2585.
84. Deepa, M.; Srivastava, A. K.; Saxena, T. K.; Agnihotry, S. A., Annealing induced microstructural evolution of electrodeposited electrochromic tungsten oxide films. Appl. Surf. Sci. 2005, 252 (5), 1568-1580.
85. Sivakumar, R.; Gopalakrishnan, R.; Jayachandran, M.; Sanjeeviraja, C., Investigation of x-ray photoelectron spectroscopic (XPS), cyclic voltammetric analyses of WO3 films and their electrochromic response in FTO/WO3/electrolyte/FTO cells. Smart Mater. Struct. 2006, 15 (3), 877-888.
86. Wang, X. G.; Jiang, Y. S.; Yang, N. H.; Yuan, L.; Pang, S. J., Crystallinity and morphology changes of a-WO3 films. Appl. Surf. Sci. 1999, 143 (1-4), 135-141.
87. Habib, M. A.; Glueck, D., THE ELECTROCHROMIC PROPERTIES OF CHEMICALLY DEPOSITED TUNGSTEN-OXIDE FILMS. Sol. Energy Mater. 1989, 18 (3-4), 127-141.
88. Kharade, R. R.; Mane, S. R.; Mane, R. M.; Patil, P. S.; Bhosale, P. N., Synthesis and characterization of chemically grown electrochromic tungsten oxide. J. Sol-Gel Sci. Tech. 2010, 56 (2), 177-183.