簡易檢索 / 詳目顯示

研究生: 許耀中
Hsu, Yao-chung
論文名稱: 微管中火焰加速與爆燃波轉變爆震波之研究
An Experimental Study on Flame Acceleration and Deflagration-to-Detonation Transition in Narrow Tube
指導教授: 趙怡欽
Chao, Yi-chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 56
中文關鍵詞: 擴張室火焰加速微管燃燒爆燃波轉變爆震波
外文關鍵詞: deflagration-to-detonation transition, micro-combustion, flame acceleration, pre-chamber
相關次數: 點閱:93下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於微推進與動力產生系統的需求日益增加,以微燃燒做為能量來源勢必成為一個先驅性與極具挑戰的研究。由於微燃燒因為熱散失問題造成能量消耗,考慮到高速火焰燃燒系統能夠解決主要的熱散失問題,微型爆震波系統概念因此孕育而生,此外,爆震波系統更比傳統燃燒系統有更高的效率。綜觀以上因素,其微型爆震波動力之發展實值得深入探討。
    以爆燃波轉變爆震波產生爆震波的方式是一項非常可行的方法,但是目前在微管中爆燃波轉變爆震波現象方面的研究相當少,因此本論文以實驗研究的方式,探討微管中火焰加速及爆燃波轉變爆震波現象,並且提出在點火端之前擴張室(pre-chamber)以穩定點火啟動並促進火焰加速的全新設計概念,來促使發生爆震波。實驗參數包含管徑大小、擴張室尺寸、燃料初始壓力等。
    結果發現擴張室對於火焰加速有相當大的幫助,使得1mm到2mm的管徑下皆能使常壓下化學當量氫氧火焰產生爆燃波轉變爆震波現象。並且改變初始壓力,當初始壓力增加時,其爆震波產生距離(induction distance)縮短。在相同管徑下,擴張室尺寸的變化對於較小的管徑的影響較不顯著;而擴張室尺寸對於2mm的管徑則影響的差異性較大。本研究中最小的爆震波產生距離發生在初始壓力為34.5psi下、管徑1mm而擴張室9mm的條件,為116mm。

    The increasing demand for micro-power systems for the world-wide extensive applications in microelectromechanical systems (MEMS) and personal utility systems has given a significant impetus on investigations of micro-propulsion and micro-combustion. Concepts of micro-scale detonation systems were proposed recently to resolve the heat loss problems in the micro-combustion system by means of high speed flame propagating in the chamber. Furthermore, the detonation system has much higher thermal efficiency compared to the other traditional low speed combustion systems. In view of these advantages, the micro detonation power systems deserve further in-depth research and developments..
    Generation of the detonation in the manner of deflagration-to-detonation transition (DDT) in macro-scales has been shown feasible and successful. However, the research of DDT in a microscale tube is scarce and with challenges so far. Accordingly, in this study we will discuss the phenomenon of DDT in a micro-tube with experimental measurements and further propose the novel design of the pre-chamber to promote flame acceleration and to stabilize the onset of detonation. Experimental parameters include tube sizes, pre-chamber dimensions, and initial pressure of the mixtures.
    Results show that the pre-chamber set-up is definitely helpful for flame acceleration, and occurrence of DDT in the stoichiometric hydrogen- oxygen mixture in the 1mm-diameter to 2mm-diameter tubes at atmospheric pressure. Besides, DDT induction distance can be decreased depending on increaseof the initial pressure. For the fixed tube size cases, the effects of pre-chamber are not pronounced in the smaller tube, whereas this influence become significant in the larger 2mm-diameter tube cases. In this study, the shortest detonation induction distance of 116mm was reached at the case of 1mm-diameter tube with 9mm-diameter pre-chamber at 34.5 psia.

    摘要 I Abstract III 誌謝 V 目錄 VI 第一章 緒論 1 1-1 簡介 1 1-1.1 研究背景 1 1-1.2 微燃燒與其遭遇之問題 3 1-1.3 超音速爆震波燃燒系統 5 1-2 文獻回顧 7 1-2.1 爆燃波轉變爆震波之現象 7 1-2.2 微小管徑中爆震波現象 8 1-2.3 管徑參數對於DDT的影響 10 1-2.4 壓力參數對於DDT的影響 11 1-2.5 微管中的爆燃波轉變爆震波現象 11 1-3 研究動機與目的 13 第二章 實驗設備與方法 15 2-1 燃燒室設計 15 2-1.1 直管燃燒室系統 16 2-1.2 點火端安裝擴張室之燃燒系統 16 2-2 燃料與充填系統 17 2-3 點火系統 18 2-4 光學量測系統-高速攝影機 20 2-5 高速攝影機的控制與實驗方法 21 第三章 實驗結果與討論 23 3-1 實驗結果 23 3-1.1 初步實驗結果 23 3-1.2 初步結果討論 25 3-2 實驗結果與討論 26 3-2.1 相同擴張室下不同管徑微管之影響 26 3-2.2初始壓力壓力對於DDT產生距離之影響 27 3-2.3不同擴張室尺寸對於不同管徑之影響 28 3-3 爆燃波轉變爆震波之機制 28 3-3.1 低於C-J爆震波速之延遲現象 28 3.3-2 區域爆炸現象 29 3-4 綜合討論 30 第四章 結論 31 第五章 未來工作 33 參考文獻 34 自述 56 表一、爆震波與爆震波之主要差異 37 表二、氫氣與乙烯對於爆震波極限的相關參數 37 圖2-1、實驗設備全覽 38 圖2-2、實驗配置圖 38 圖2-3、點火端設置擴張室之概念圖(D:擴張室直徑、d:石英管直徑(i.d.)) 39 圖2-4、石英管與擴張室6mm之點火端 39 圖2-5、燃燒室上游點火端(右)與下游填充段(左) 40 圖2-6、ULVAC真空幫浦 40 圖2-7、燃料充填系統與Rosemount壓力傳測器(中左) 41 圖2-8、高壓衰減探棒 41 圖2-9、BNC Model 555脈波產生器 42 圖2-10、PCO高速攝影機(含Nikon鏡頭) 42 圖2-11、光偵測器 43 圖3-1、在2mm直管下的低速火焰行進 43 圖3-2、在2mm直管下速度分佈圖 44 圖3-4、2mm直管在較高初始壓力下的爆燃波轉變爆震波的速度分布圖 45 圖3-5、管徑為2mm擴張室6mm之爆燃波轉變爆震波行為;由上而下別為不同的初始壓力:(a)15psi、(b)20psi、(c)25psi、(d)34psi 45 圖3-6、管徑2mm,擴張室6mm於15psi下之火焰頂端速度與位置之關係圖 46 圖3-7、管徑2mm,擴張室6mm於20psi下之火焰頂端速度與位置之關係圖 46 圖3-8、管徑2mm,擴張室6mm於25psi下之火焰頂端速度與位置之關係圖 47 圖3-9、管徑2mm,擴張室6mm於34psi下之火焰頂端速度與位置之關係圖 47 圖3-10、管徑為1mm擴張室9mm之爆燃波轉變爆震波行為;由上而下別為不同的初始壓力:(a)15psi、(b)18psi、(c)20psi、(d)23psi、(e)25psi、(f)35psi 48 圖3-11、管徑1mm,擴張室9mm於15psi下之火焰頂端速度與位置之關係圖 49 圖3-12、管徑1mm,擴張室9mm於18psi下之火焰頂端速度與位置之關係圖 49 圖3-13、管徑1mm,擴張室9mm於20psi下之火焰頂端速度與位置之關係圖 50 圖3-14、管徑1mm,擴張室9mm於23psi下之火焰頂端速度與位置之關係圖 50 圖3-15、管徑1mm,擴張室9mm於25psi下之火焰頂端速度與位置之關係圖 51 圖3-16、管徑1mm,擴張室9mm於35psi下之火焰頂端速度與位置之關係圖 51 圖3-17、6mm擴張室於不同管徑下,初始壓力與爆震波產生距離之關係;其中趨勢線為冪次曲線 52 圖3-18、9mm擴張室於不同管徑下,初始壓力與爆震波產生距離之關係;其中趨勢線為冪次曲線 53 圖3-19、1mm管徑於不同擴張室尺寸,初始壓力與爆震波產生距離之關係 54 圖3-20、2mm管徑於不同擴張室尺寸,初始壓力與爆震波產生距離之關係 54 圖3-21、兩段式區域爆炸與火焰延遲現象 55

    Bollinger, L. E., Fong, M. C., Edse, R.” Experimental measurements and theoretical analysis of detonation induction distance.” American Rocket Society Journal Vol. 31, No. 5, pp. 588-595, 1961.
    Bollinger, L. E., Laughrey, J. A., Edse, R. ”Experimental detonation velocities and induction distances in hydrogen–nitrous oxide mixture.” American Rocket Society Journal Vol. 32, No. 1, pp. 81-82, 1962.
    Bollay, W. United States Patent 2,942,412 , June, 28, 1960.
    Falempin, F., Bouchaud, D., Daniau, E., “Pulse Detonation Engine: Towards a Tactical Missile Application”, 36th AIAA/ASME /SAE/ASEE Joint Propulsion Conference 17-19 July, 2000,Huntsville, Alabama.
    Frolov, S.M., Gel’fand, B. E., “Limit diameter of gas detonation propagation in tubes”, translated from Fizika Goreniya I Vzryva, Vol. 27, pp. 118-122, 1991.
    Kuo , Kenneth K., “Principles of combustion” , 2nd edition ,Wiley, 2005.
    Kuznetsov, M., Alekseev, V., Matsukov, I., Dorofeev, S. “DDT in a Smooth Tube Filled with Hydrogen-Oxygen Mixtures”,Shock Waves, Vol.14, No.3, pp.205-215, 2005.
    Manzhalei, V. I., “Detonation regimes of gases in capillaries”, translated from Fizika Goreniya I Vzryva, Vol. 28, pp. 93-99, 1992.
    Manzhalei, V. I. “Low-velocity Detonation Limits of Gaseous Mixtures”, Combustion, Explosion, and Shock Waves, Vol.35, No.3, pp. 296-302, 1999.
    Roy, G. D., “Combustion Processes in Propulsion”, Academic Press , Elsevier, 2006.
    Roy, G. D., Frolov, S. M., Borisov, A. A., and Netzer, D. W., “Pulse detonation propulsion: challenges, current status, and future perspective,” Progress in Energy and Combustion Science Vol. 30, pp.545-672, 2004.
    Smirnov, N.N., Nikitin, V. F.,”Effect of Channel Geometry and Mixture Temperature on Detonation-to-Deflagration Transition in Gases.”, Combustion, Explosion, and Shock Waves, Vol.40, No.2, pp. 186-199, 2004.
    Sorin, R., Zitoun, R., Desbordes, D., “Optimization of the deflagration to detonation transition: reduction of length and time of transition”, Shock Waves, Vol. 15, pp.137-145, 2006.
    Steen, H. and Schampel, K. "Experimental investigation of the run-up distance of gaseous detonations in large pipes", 4th International Symposium on Loss Prevention and Safety Promotion in the Process Industries, Pergamon Press, London UK, pp. E23-E33, 1983.
    Teodorczyk, A. “Scale effects on hydrogen-air fast deflagrations and detonations in small obstructed channels.”, Journal of Loss Prevention in the Process Industries, Vol.21,issue 2, pp. 147-153, 2008.
    Wu, M.H., Burke, M.P., Son, S.F., Yetter, R.A. , ”Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes” Proceedings of the Combustion Institute, Vol. 31 ,pp. 2429–2436, 2007.
    Zhu, Y. J., Chao, J., Lee, J.H.S., “An experimental investigation of the propagation mechanism of critical deflagration waves that lead to the onset of detonation”, Proceedings of the Combustion Institute, Vol. 31, pp. 2455-2462, 2007.
    http://defense-update.com/features/du-2-04/mav-darpa.htm.
    李俊明 “燃爆脈衝震波引擎之初步研究” ,國立成功大學航空太空工程研究所碩士論文,1999

    下載圖示 校內:2010-08-26公開
    校外:2010-08-26公開
    QR CODE