簡易檢索 / 詳目顯示

研究生: 陳泀潣
Chen, Szu-Min
論文名稱: 適用於關鍵參數搜尋架構之各式資料品質評估機制
Various Data-Quality-Evaluation Schemes for the KSA Scheme
指導教授: 鄭芳田
Cheng, Fan-Tien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 42
中文關鍵詞: 良率管理關鍵參數搜尋演算法資料品質
外文關鍵詞: Yield Management, Key-variable Search Algorithm, Data Quality
相關次數: 點閱:112下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在實際生產線上,最在乎的就是生產良率,因為產品良率會直接影響生產成本。因此生產者在產品研發階段以及量產階段遇到良率不佳時,期望透過生產過程中的資訊來進行良率分析,找出影響良率之根本原因並加以改善,達到快速提升產品良率之目的,避免不必要的成本浪費。
    傳統良率分析之方法是透過長時間的歷史資料以及專家經驗,來找出影響良率的原因。隨著工廠規模以及製程複雜度日益上升,所收集的各式資料勢必為一個高維度且巨量之資料,對於傳統良率分析方法勢必會耗費相當多的時間。因此,本研究團隊提出了關鍵參數搜尋演算法 (Key-variable Search Algorithm, KSA),用以解決上述所提及之問題。
    在整個生產線上,會收集到各式各樣的資料 (如生產路徑資料、生產製程資料…等)。鑒於全自動虛擬量測系統 (Automatic Virtual Metrology, AVM) 在進行分析前,針對不同的資料進行資料品質之把關。基於相同理念,本論文針對進入KSA架構中的各式資料,提出適用於關鍵參數搜尋架構之各式資料品質評估機制來進行資料品質的把關,使KSA架構更為完善,避免KSA之分析結果受到資料品質影響。

    Yield is the most important issue on actual production lines because it will directly affect the production cost. Therefore, when encountering a poor yield in the R&D stage and the mass production stage, the manufacturers expect to do the yield analysis with various manufacturing-related data for finding the root causes of the yield loss and improving the yield to avoid unnecessary cost.
    The traditional approach of yield analysis is to find the causes of the yield loss by historical data and expert knowledge. As the expansion of the factory scales and the complexity of the manufacturing processes increase, all kinds of the collected data would certainly become big and high-dimensional data, which means that it would take a lot of time to analyze data with the traditional yield analysis approach. Therefore, our research team proposes Key-variable Search Algorithms (KSA) to solve the problems mentioned above.
    Various kinds of data such as route data, process data, etc., would be collected throughout the production lines. Based on Automatic Virtual Metrology (AVM), which includes data-quality-evaluation module that can perform data quality check before analyzing/processing, various data-quality-evaluation algorithms are proposed for all kinds of data analyzed by the KSA scheme in this paper. These evaluation algorithms enable the KSA scheme to work better and avoid its performance being affected by bad data quality.

    摘 要 II 誌 謝 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 研究流程 4 1.4 論文架構 5 第二章 文獻探討與理論基礎 6 2.1 文獻探討 6 2.1.1 資料品質 6 2.1.2 資料品質評估指標與適應共振理論2 6 2.2 相關理論基礎 7 2.2.1 製程介紹 7 2.2.2 歐氏距離 14 2.2.3 Leave One Out (LOO) 交叉驗證法 14 2.2.4 製程資料品質評估演算法 14 2.2.5 盒鬚圖 15 2.2.6 k-means分群演算法 16 2.2.7 Slope statistic群數估計方法 16 第三章 研究方法 18 3.1 原始資料處理 18 3.1.1 原始生產路徑資料處理 18 3.1.2 原始生產製程資料處理 19 3.1.3 原始站點間量測資料處理 19 3.1.4 原始最終量測資料處理 20 3.2 生產路徑資料 (XR) 品質評估機制 20 3.3 生產製程資料 (XP) 品質評估機制 20 3.4 站點間量測資料 (y) 品質評估機制 21 3.4.1 站點間量測資料 (y) 品質評估機制說明 21 3.4.2 模擬實驗一 23 3.4.3 模擬實驗二 24 3.5 最終量測資料 (Y) 品質評估機制 25 3.5.1 針對First Yield量測結果之數值特性進行資料品質把關 25 3.5.2 針對First Yield資料之物理意義進行KSA分析結果再驗證 25 3.5.3 First Yield分析結果不佳探討及改善 26 第四章 以TFT製程實現與驗證各式資料品質評估機制 29 4.1 實現與驗證生產路徑資料 (XR) 品質評估機制 29 4.2 實現與驗證生產製程資料 (XP) 品質評估機制 30 4.3 實現與驗證站點間量測資料 (y) 品質評估機制 32 4.4 實現與驗證最終量測資料 (Y) 品質評估機制 37 第五章 結論 40 5.1 總結 40 5.2 未來研究方向 40 參考文獻 41

    [1] F.-T. Cheng, Y.-S. Hsieh, J.-W. Zheng, S.-M. Chen, R.-X. Xiao, and C.-Y. Lin, “A Scheme of High-dimensional Key-variable Search Algorithms for Yield Improvement,” IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 179-186, Jan. 2017
    [2] John S. Oakland, Statistical Process Control, 6th ed., Oxford, UK : Elsevier, 2007
    [3] G. Spitzlsperger, C. Schmidt, G. Ernst, H. Strasser, and M. Speil, “Fault Detection for a Via Etch Process Using Adaptive Multivariate Methods,” IEEE Transactions on Semiconductor Manufacturing, vol. 18, no. 4, pp.528-533, Nov. 2005
    [4] C. J. Spanos, H. F. Guo, A. Miller, and J. Levine-Parrill, “Real-Time Statistical Process Control Using Tool Data,” IEEE Transactions on Semiconductor Manufacturing, col. 5, no. 4, pp. 308-318, Nov. 1992
    [5] Carter, Russell, and Jay Lubinsky. Rehabilitation research: principles and applications. Elsevier Health Sciences, 2015.
    [6] F.-T. Cheng, H.-C. Huang, and C.-A. Kao, “Developing an Automatic Virtual Metrology System,” IEEE Trans. on Automation Science and Engineering, vol. 9, no. 1, pp. 181-188, Jan. 2012.
    [7] Y.-T. Huang and F.-T. Cheng, “Automatic data quality evaluation for the AVM system,” IEEE Transactions on Semiconductor Manufacturing, vol. 24, no. 3, pp.445-454, August 2011.
    [8] Y.-T. Huang, F.-T. Cheng, Y.-H. Shih and Y.-L. Chen, “Advanced ART2 scheme for enhancing metrology-data-quality evaluation,” J. Chin. Inst. Eng., vol. 37, no. 8, pp. 1064-1079, 2014.
    [9] F.-T. Cheng, C.-A. Kao, C.-F. Chen; W.-H. Tsai, “ Tutorial on Applying the VM Technology for TFT-LCD Manufacturing,” IEEE Transactions on Semiconductor Manufacturing, vol. 28, no. 1, pp. 55-69, 2015.
    [10] J. Dattorro, Convex Optimization and Euclidean Distance Geometry, Palo Alto, CA: Meboo, 2005.
    [11] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, San Francisco, CA: Morgan Kaufman, 2005.
    [12] Robert McGill, John W. Tukey and Wayne A. Larsen, “Variations of Box Plots,” The American Statistician, Vol. 32, No. 1, pp. 12-16, 1978.
    [13] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means Clustering Algorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 28, no. 1, pp. 100-108, 1979.
    [14] André Fujita, Daniel Y. Takahashi, Alexandre G. Patriota, “A non-parametric method to estimate the number of clusters”, Computational Statistics and Data Analysis, vol. 73, pp. 27-39, 2014.
    [15] Peter J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53-65, 1987.
    [16] 田民波,林怡欣校訂,TFT LCD面板設計與構裝技術,五南圖書出版社,2010,第七章。
    [17] 蕭宏,半導體製程技術與導論,第三版,全華出版社,2014。

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE