研究生: |
宋孟橋 Song, Meng-Chiao |
---|---|
論文名稱: |
影響顆粒碰撞模擬因素探討 Investigation of Effective Factors on Particles Collision Simulation |
指導教授: |
張克勤
Chang, Keh-Chin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 雙體碰撞硬球模式 、歷史作用力 、附加質量作用力 、顆粒重疊 |
外文關鍵詞: | binary hard-sphere model, added mass force, history force, particle overlapping extent |
相關次數: | 點閱:112 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目標有兩點,一種是探討BBO equation在此模擬環境中的適用性,另一種則是探討要如何降低顆粒運動數值計算過程中不合理的顆粒重疊行為,為了降低此現象的發生,而其時間步階應該如何選用。
由模擬之結果中皆顯示出,當顆粒間發生碰撞頻率越高時,其顆粒所受到之歷史作用力以及附加質量作用力皆會與之提升,但是這兩項作用力的貢獻仍然可以將其忽略不計。因此,在傳統只考慮顆粒所受之體力與阻力的顆粒碰撞之一般簡化運動方程式當中,依然可以適用在顆粒與顆粒間碰撞的模擬中。
在顆粒間的碰撞模擬當中,本研究採用雙體碰撞硬球模式的方法去進行模擬。而在採用雙體碰撞之硬球模式當中的先決條件就是時間步階的選取要夠小,這樣才能區分出碰撞發生的前後,並且時間步階要遠小於顆粒的平均自由時間。而在本研究當中找出了一個較具量化的結果:當時間步階小於平均自由時間一個數量級的時候,亦即∆t⁄τ_c =O(〖10〗^(-1)),此時可以確保顆粒重疊的程度小於1%之內。
There are two objectives in this thesis. One is to investigate the necessity of the use of the BBO equation in the simulation of the inter-particle collision process. The other is to avoid the particle overlapping occurred in the calculation procedure of the particles’ motion and collisions.
It is found that the influences of the history force and the added mass force are indeed increased when the inter-particle collisions become more frequently in the motion of particles, but their contributions to the equations of motion can be still neglected. Thus, the conventional simplified equations of motion which consider the drag and body forces only are still applicable in the simulation of particles’ motion with considerate inter-particle collisions.
To account for the inter-particle collisions in the simulation of particles’ motion, the uncoupling technique of binary hard-sphere model is employed. One prerequisite for adopting the binary hard-sphere model is that the computational time step (∆t), which is used in the time integration of the equations of motion, must be sufficiently shorter than the mean free time (τ_c) for the binary particle collision. A more quantitative criterion of ∆t⁄τ_c =O(〖10〗^(-1)) is concluded in this study. This criterion permits the particle overlapping extent to fall within 1%.
[1] Basset, A.B.(1888), Treatise on Hydrodynamics, Deighton Bell, London
[2] Boussinesq, J.(1895), Theorie Analytique de al Chaleur, L’Ecole Polytechnique, Paris, 2, 224.
[3] C.T. Crowe, M. Sommerfeld, and Y. Tsuji(1998), Multiphase Flows with Droplets and Particles, CRC Press
[4] C.T. Crowe, T.R. Troutt, & Chung J.N.(1996), “Numerical models for two-phase turbulent flows”, Annular Review of Fluid Mechanics, 28, pp.11-43
[5] Denis, S.C.R., Singh, S.N. and Ingham, D.B.(1980), The steady flow due to a rotating sphere at low and moderate Reynolds numbers, Journal of Fluid Mechanics, 101(2), p.259
[6] Hjelmfelt, A.T. and Mockros, L.F.(1966), Motion of discrete particles in a turbulent fluid, App. Sci. Res., 16, 149
[7] J.D. Kulick, J.R. Fessler, and J.K. Eaton(1994), “Particle response and turbulence modification in fully developed channel flow”, Journal of Fluid Mechanics, pp.109-134
[8] K.C. Chang, C.H. Hsu, M.C. Hsu(2005), “Eulerian-Lagrangian Simulation of Gas-Particle Flows”, Transactions of the Aeronautical and Astronautical Society of the R.O.C., vol37, No.4, pp.281-292
[9] K.Yamane(1997), Dynamics of granular flows in a rotating cylinder, Osaka University, Japan
[10] M. Sommerfeld(2001), “Validation of a stochastic Lagrangian modeling approach for inter-particle collisions in homogeneous isotropic turbulence”, International Journal of Multiphase Flow, 27, pp.1829-1858
[11] Oseen, C.W.(1927), Hydrodynamik, Leipzig
[12] P.A. Cundall, O.D.L. Strack(1979), “A discrete numerical model for granular assemblies”, Geotechnique, 29, pp47-65
[13] Y. Tsuji(2000), “Activities in discrete particle simulation in Japan”, Powder Technology, 113, pp.278-286
[14] Y.K. Pan(2000), Numerical Analysis on Particle-Laden Rotating Turbulent Flow, Osaka University, Japan
[15] 許志宏(2005), “含顆粒碰撞機制之氣體-顆粒兩相流場模擬”, 國立成功大學航空太空工程研究所博士論文