簡易檢索 / 詳目顯示

研究生: 陳致宏
Chen, Jr-hung
論文名稱: 非線性薛丁格方程在能量空間的散射理論
Scattering theory in the energy space for the nonlinear Schrodinger equation
指導教授: 方永富
Fang, Yung-fu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 75
中文關鍵詞: 非線性Schrodinger 方程散射理論Morawetz 估計
外文關鍵詞: Nonlinear Schrodinger equation, Morawetz, Scattering theory
相關次數: 點閱:146下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,主要是探討在一維和二維之時空下,薛丁格方程的散射現象。有別於三維和三維以上的Morawetz estimate,我們特別利用對原方程乘上特定權重函數的調整,並進一步獲得一些重要的正項與消去不必要的函數。
    接著,我們延續Bourgain 的想法,在整個非線性解局部能量聚集的情況下,可以進一步分離在時間端點非線性解與線性解之能量關係,透過這個方式,藉由對能量歸納法的證明,我們最終能證明非線性解所需要的全域估計。

    In this paper, we mainly discuss the scattering phenomenon of Schrodinger Equation in dimension one and two. Being different with the Morawetz estimate of three dimension and above, we multiplied with a specific weight function to the equation and further obtains some importantly positive terms and eliminated the nonessential functions.
    Next, we continued Bourgain’s idea in entire nonlinear solution localized energy accumulation situation, we can separate the energy in time vertex between the relationship of nonlinear and linear solution. By this way, we used the induction on the energy size, we obtain the global estimate for the nonlinear solutions of asymptotic completeness in the long run.

    1 Introduction 2 2 Some Basic Theorems About This Paper 6 2.1 Embedding theorems . . . . . . . . . . .6 2.2 About Some Important Inequality Theoreies . . . . . 7 3 Notations and Conventions 9 3.1 Conservation Laws . . . . . . . . . . . 9 3.2 Solution Formula for NLS . . . . . . . . . . 12 4 Basic Estimate on ST-norms 14 4.1 Some Basic Estimates . . . . . . . . . . . 14 4.2 Distribution of ST-norms . . . . . . . . . . 27 5 Morawetz-Type Estimates 33 5.1 Morawetz Estimate . . . . . . . . . . . 33 5.2 Weighted Global Estimate For ST-norms . . . . . 42 6 Separation of The Localized Energy 47 6.1 Space-Time Localized Energy . . . . . . . . 47 6.2 Separation of The Localized Energy . . . . . . . .51 7 Perturbation Argument 61 8 Global Space-Time Integrability 66 9 Scattering 69

    [1] J. Bourgain, Global well-posedness of defocusing 3D critical NLS in the radial case, JAMS 12 (1999), 145-171.
    [2] J. Bourgain, New global well-posedness results for nonlinear Schrodinger equations, AMS Publications, 1999.
    [3] T. Cazenave, F.B. Weissler, Some remarks on the nonlinear Schrodinger equation in the critical case, Nonlinear semigroups, Partial Differential Equations and Attractors, Lecture Notes in Math. 1394 (1989), 18–29.
    [4] T. Cazenave, F.B. Weissler, Critical nonlinear Schrodinger Equation, Non. Anal. TMA 14 (1990), 807–836.
    [5] T. Cazenave, An introduction to nonlinear Schrodinger equations, TextosdeM’etodos Matem’aticos 26, Instituto de Matem’atica UFRJ, 1996.
    [6] T. Cazenave, Semilinear Schrodinger equations, Courant Lecture Notes in Mathematics, 10. American Mathematical Society, 2003.
    [7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness and scattering in the energy space for the critical nonlinear Schrodinger equation in R3, preprint.
    [8] D. Foschi, Inhomogeneous Strichartz estimates, Journal of Hyperbolic Differential Equations, vol.2 no.1 (2005).
    [9] G. Furioli, E. Terraneo, Besov spaces and unconditional well-posedness for the nonlinear Schrodinger equation in H’s, Comm. in Contemp. Math. 5 (2003), 349–367.
    [10] G. Furioli, F. Planchon, E. Terraneo, Unconditional well-posedness for semilinear Schrodinger equations in Hs, Harmonic analysis at Mount Holyoke, (South Hadley, MA, 2001), 147–156.
    [11] J. Ginibre, G. Velo, The global Cauchy problem for the nonlinear Schrodinger equation revisited, Ann. Inst. H. Poincare’Anal. Non Line’aire 2 (1985),309–327.
    [12] R.T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinearSchrodinger operators, J. Math. Phys. 8 (1977), 1794–1797.
    [13] M. Grillakis, On nonlinear Schrodinger equations, Comm. Partial Differential Equations 25 (2000), no. 9-10, 1827–1844.
    [14] T. Kato, On nonlinear Schrodinger equations, Ann. Inst. H. Poincare Phys. Theor. 46 (1987), 113–129.
    [15] T. Kato, On nonlinear Schrodinger equations, II. Hs-solutions and unconditional well-posedness, J. d’Analyse. Math. 67, (1995), 281–306.
    [16] M. Keel, T. Tao, Endpoint Strichartz Estimates, Amer. Math. J. 120 (1998), 955–980.
    [17] S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrodinger equations, J. Diff. Eq. 175, (2001), 353–392.
    [18] K. Nakanishi, Scattering theory for nonlinear Klein-Gordon equation with Sobolev critical power, IMRN 1 (1999), 31–60.
    [19] E. Ryckman, M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrodinger equation in R1+4, preprint.
    [20] T. Tao, Global well-posedness and scattering for the higher-dimensional energy critical non-linear Schrodinger equation for radial data, to appear New York Journal of Math.
    [21] M. Visan, The defocusing energy-critical nonlinear Schrodinger equation in higher dimensions, in preparation.

    下載圖示 校內:立即公開
    校外:2009-07-06公開
    QR CODE