簡易檢索 / 詳目顯示

研究生: 周洧志
Chou, wei- Chih
論文名稱: 具橫條結構T型管微混合器混合效率改良
Mixing Efficiency Improvement of T-channel Micromixers with Crossbar Structures
指導教授: 潘大知
Pan, Dar-Tzi
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 50
中文關鍵詞: 計算流體力學微混合器T型管田口方法
外文關鍵詞: CFD, Micromixer, T-channel
相關次數: 點閱:136下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    論文題目:具橫條結構T型管微混合器混合效率改良
    研究生:周洧志
    指導教授:潘大知

    本研究以計算流體力學作為工具,對T型管微混合器進行數值模擬實驗,探討在T型管主流道內加入橫條結構對混合器混合效率之影響,並以田口方法設計橫條得結構參數,利用直交表搭配控制因子反應表找出有利於提升混合效率的參數趨勢,進而找出高混合效率之設計參數。

    關鍵字:計算流體力學;微混合器;T型管;田口方法

    Mixing Efficiency Improvement of T-channel Micromixers with Crossbar Structures

    Author: wei- Chih Chou

    Advisor: Dar-Tzi Pan

    Department of Aeronautics and Astronautics, National Cheng Kung University

    SUMMARY
    Numerical simulations are performed to study the mixing efficiency of T-channel micromixers with crossbar structures immersed in the main channel . A commercial CFD software and Taguchi Method are used to set up numerical experiments to search for the crossbar geometric parameters corresponding to high mixing efficiency.

    Keywords: CFD; Micromixer; T-channel

    INTRODUCTION
    There are two kinds of micromixers:
    Active micromixers: External sources of energy of various kind are introduced and actively controlled to enhance mixing.
    Passive micromixers: No movable or controllable component is implemented. Mixing can be enhanced only by inducing vortical flows using geometric variations of the flow passage.

    This thesis works on the improvement of passive T-channel with crossbar structures placed in the main channel to enhance mixing. A commercial software developed by CFDRC is used as the tool to compute the mixing phenomena of two fluids in the main channel of micromixers. The orthogonal tables of Taguchi method are employed to find the geometric settings of the crossbar structures for high mixing efficiency. The geometric dimensions of the crossbars and the main channel are less than 1mm.

    IMPORTANT PARAMETERS
    Reynolds Number:
    The Reynolds number is defined as Re=(ρV_ref L_ref)/μ, where ρ is the density of the fluid(kg/m^3), V_ref is the characteristic velocity of the fluid flow (m/s), L_ref is a characteristic linear dimension(m), μ is the dynamic viscosity of the fluid( kg / m • s). Reynolds number is generally used to identify whether the flow studied is
    laminar or turbulent. In this thesis, the Reynolds number is so low that the flow is laminar.
    Schmidt Number:
    Schmidt number (Sc) is a dimensionless number defined as Sc=μ/ρD, where μ is the dynamic viscosity of the fluid( kg / m • s), ρ is the density of the fluid(kg/m^3), D is the mass diffusivity (m^2/ s). It is an indicator of the effectiveness of mass diffusion as compared with momentum diffusion.

    BASIC ASSUMPTIONS
    The two fluids undergoing mixing are the same fluid with different mole concentrations. During and after mixing the fluid properties remain unchanged, but concentration changes. The following conditions are assumed:
    (1)The fluid is Newtonian fluid.
    (2)The flow is incompressible and laminar.
    (3)The fluid density , viscosity and diffusivity are constant.
    (4)No chemical reaction occur during mixing.
    (5)The body forces can be neglected.

    TAGUCHI METHOD
    The Taguchi method is a statistical method developed by Genichi Taguchi. It has been widely used in factories to improve the quality of manufactured goods. The orthogonal table of Taguchi method is usually applied to minimize the number of experiments required to collect adequate statistical information about the manufacturing process in order to ensure the quality control of the product. It is termed as L_a (b^c), where “a” is the number of experimental runs, “b” is the number of possible settings of control factors, and “c” is the number of control factors of the processes. In this thesis, Taguchi method is used to setup the numerical experiments for finding the crossbar parameters corresponding to high mixing efficiency.

    BASIC SMOOTH-WALL T-CHANNEL MICROMIXER
    The height H of the square sectional plane of the main channel is used as the reference length in this study. It is 1 mm. The mean velocity U_mean at the branch entrance of the mixer is used as the reference velocity. The Reynolds number studied here ranges from Re=0.1 to Re=10, which is well within the laminar flow range. For smooth-wall micromixer, the mixing occurring in the main channel relies mainly on the molecular diffusion in the direction perpendicular to the main stream.
    A mixing index σ can be defined for the concentration distribution on the cross sectional plane of the main channel. While σ =0 indicates no mixing occurs on the plane, σ=100% means a complete mixing. Here we take σ=99% or 98% as an indication of well mixing. The length of channel required for the occurrence of σ=99% is termed as L_(99%). For smooth wall micromixers with water as the working fluid, L_(99%)=28.5mm. We shall introduce structural variations in the main channel to enhance mixing, or equivalently, to reduce L_(99%).

    MIXING ENHANCEMENT BY CROSSBAR STRUCTURES
    Two rows of crossbar are placed in the main channel to enhance mixing. The control factors adapted in this study are:
    The gap distance G between the upper and the lower crossbars.
    The separation S between two consecutive crossbar structures.
    The horizontal offset of the crossbars.
    The oblique angle T of the crossbar relative to the main stream direction.
    The height of crossbar, H.
    The upper row and the lower row of crossbars can be placed in parallel to each other or in staggered Ⅹ-formation.
    The combination of control factors derived from this study using water as the working fluid at Re=0.1 reduces the channel length required for a 99% mixing from 28.5mm for smooth-wall T-channel micromixer to only 9.76mm.

    CONCLUSION
    Numerical results have shown that the staggered Ⅹ-formation is less effective to enhance mixing. Instead, the parallel crossbar formation with proper geometric parameters can effectively reduce L_(98%) with working fluid of water, alcohol and hydrogen gas at Reynolds number less than 10.

    目錄 目錄 I 表目錄 III 圖目錄 V 符號說明 VII 第一章 緒論 1 1-1研究背景 1 1-2 微混合器分類 2 1-3 主動式微混合器 4 1-3-1壓力擾動式 4 1-3-2磁驅動式混合器 5 1-3-3利用橫向動量增加擾動式微混合器 6 1-4被動式微混合器 7 1-4-1層疊式微混合器 7 1-4-2注射式微混合器 8 1-5 研究概念 9 第二章 流體混合現象之統御方程式及數值模擬工具 10 2-1基本假設 10 2-2統御方程式 11 2-3 CFD流場模擬工具 12 2-4邊界條件設定 13 2-5 重要參數 14 2-6 田口法 16 第三章 基本模擬驗證 17 3-1 T型管微混合器 17 3-2 一維擴散原理 21 3-3三維數值驗證:壁面凹槽對混合效率之影響 28 第四章 橫條結構之微混合器改良設計與分析 32 4-1交錯橫條式T型管微混合器之改良 32 4-2橫條檔板幾何參數研究 37 4-3 工作流體為氫氣,橫條為混合器參數研讀 38 4-4交叉T型管微混合器 46 第五章 結論 49 參考文獻 50 表目錄 表3-1、工作流體為水,Re=1時二維T型管混合器主流道長40mm出口處混合效率指數與進出口壓差 20 表3-2、水與酒精之物理性質表 23 表3-3、一維擴散管道寬1mm時工作流體為水之混合效率與時間表 24 表3-4、水與酒精對不同管道之完全混合時間 25 表3-5(a) 、波長2πq=100μm,於不同高度(H)下改變α值,Stroock et al.[8]所得之實驗值、理論值以及程式模擬而得知結果。 30 表3-5(b) 、波長2πq=200μm,於不同高度(H)下改變α值,Stroock et al.[8]所得之實驗值、理論值以及程式模擬而得知結果。 30 表4-1、平滑T型管與交錯橫條式T型管之完全混合長度比較 34 表4-2、控制因子與水準值之表 37 表4-3、工作流體為氫氣,Re=0.01、利用L_27 3^13直交表模擬出L98%及L90%之值 39 表4-5、工作流體為氫氣,Re=0.01,利用L_27 3^13直交表計算出各因子L98%反應表 40 表4-6、工作流體為氫氣,Re=0.01,利用L_27 3^13直交表計算出各因子L98%交互作用反應表 41 表4-7、推估參數、編號6與邱柏誠論文三組參數之L98%值比較 43 表4-8、控制因子與水準值之表 47 表4-9、工作流體為氫氣,Re=0.01、利用L_18 (2^1×3^3)直交表模擬出L98%之值 48 圖目錄 圖1-1、N.T.Nguyen和Z.Wu混合器分類 2 圖1-2、正弦壓力波脈動混合流 4 圖1-3、磁驅動式微混合器 5 圖1-5、層疊式微混合器 7 圖1-6、注射式微混合器 8 圖2-1、CFDRC使用流程圖 12 圖3-1、基本T型管微混合器 17 圖3-2、T型管微混合器流場莫耳濃度圖 18 圖3-3(a)、工作流體為水。Re=1時主流道入口處莫耳分率濃度 19 圖3-3(b)、工作流體為水。Re=1時主流道出口處莫耳分率濃度 20 圖3-4、一維擴散管道結構圖 22 圖3-5、管道寬度與完全混合時間t99% 25 圖3-6、完全混合時間和擴散係數乘積與管道寬度對數圖 26 圖3-7、公式3-5與表3-4數據比較圖 27 圖3-8、週期性排列之凹槽結構其流場俯視圖與角度量測圖 28 圖3-9、週期性排列之凹槽與主流道之間的參數比例圖 29 圖3-10(a)、波長2πq=100μm時,Stroock et al.[8]之實驗值、計算值以及程式模擬計算之轉向角數據與α質之關係圖 31 圖3-10(b)、波長2πq=200μm時,Stroock et al.[8]之實驗值、計算值以及程式模擬計算之轉向角數據與α質之關係圖。 31 圖4-1、交錯橫條式T型管示意圖 32 圖4-2(a)、交錯橫條式T型管側視圖 33 圖4-2(b)、交錯橫條式T型管上視圖 33 圖4-3、交錯橫條式T型管與平滑T型管之混合狀況比較 34 圖4-4(a)、水作為工作流體, Re為0.1時,主流管道煙線軌機之上視圖 35 圖4-4(b)、水作為工作流體, Re為0.1時,主流管道距離與截面之濃度分佈圖 36 圖4-5(a)、混合指數沿軸向之變化圖(酒精) 44 圖4-6、交叉T型管微混合器之示意圖 46

    參考文獻

    [1]Nguyen, N. and Wu, Z ., “Micromixers - a review,” Journal of Micromechanics and Microengineering,NO.15 ,pp1-16,2005

    [2] Glasgow, I., and Aubry, N.,“Enhancement of microfluidic mixing using time pulsing,” Journal of Lab on a Chip,No.3,pp.114-120,2003

    [3]Wang . Y ., Zhe. J.and Chung, B . T. F. “A rapid magnetic particle driven micromixer” Microfluid Nanofluid 4:375-389,2008.

    [4] Mülle, S.D ., Mezi, I, Walther,J.H.,Koumoutsakos, p., “Transverse momentum micromixer optimization with evolution strategies”, Computer&Fluids,No.33,pp521-531,2004

    [5]Schwesinger, N., Frank, T., and Wurmus, H., “A Modular micro-fluidic System with an Integrated Micromixer, ”Journal of Micromechanics and Microengineering,Vol.6,No. 1,pp.99-102,1996

    [6]Miyake, R., Lammerink T.S.J., Elwenspoek M., and fluitman, J.H.J., “Micromixer with Fast Diffusion, ” An Investergation of IEEE , pp248-283,1993.

    [7]邱柏誠,利用橫條結構改善T型管微混合器之混合效率,國立成功大學航空太空研究所論文,2015。

    [8]Stroock,A.D.,Dertinger,S.K.,Whitesides,G.M.and Ajdari,A., “Patterning Flows Using Grooved Surface ”, Analytical Chemistry, Vol. 74, No.20,pp.5306-5312,2002.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE