簡易檢索 / 詳目顯示

研究生: 黃雯巧
Huang, Wen-chiao
論文名稱: 以熱水法製備單一粒徑Boehmite粉末
Hydrothermal Synthesis of Monodispersed Boehmite Powders
指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 94
中文關鍵詞: 熱水法GibbsiteBoehmite
外文關鍵詞: Gibbsite, Hydrothermal method, Boehmite
相關次數: 點閱:58下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以 gibbsite (Al(OH)3) 為原料,經熱水法製備單一粒徑的 boehmite (AlOOH) 粉末,以期作為製備單一粒徑 α-Al2O3 的原料。Boehmite 為工業上最常用來生產 α-Al2O3 粉末的原料之一,然以此為原料,經熱處理獲得之 α-Al2O3 粉末常具有粒徑分佈寬且不易具單離外型 (即易具指狀外型) 的缺點。造成此現象的主要原因之一可能是起始 boehmite 原料粒子大小分佈不均,相轉換發生時間前後不一,導致先生成的 α-Al2O3 粒子在後續熱處理中繼續成長所致。
    研究首先改變熱水處理溫度,觀察溫度改變對製備粉末之影響,接著再從中選取一適當處理溫度作為後續實驗條件。探討以 (1) 先將 gibbsite 以熱水法製備 boehmite 後,再球磨處理成特定粒徑粉末,及 (2) 先球磨縮減 gibbsite 粒徑至特定大小後,再以熱水法製備 boehmite 粉末,分析和比較兩種製程製備單一粒徑 boehmite 粉末的可能性。實驗以 XRD 觀察 boehmite 的生成情形,以粒徑分佈儀、BET 比表面積儀、SEM 及 TEM 觀察製備之 boehmite 粉末的粒徑分佈、大小及外型。結果顯示:(1) 提高熱水系統處理的溫度與縮減 gibbsite 粉末的粒徑皆有助於加快轉換為boehmite 的速度 (縮短轉換為純相 boehmite 粉末的時間)。(2) 先以熱水法製備 boehmite 再研磨的製程,其粉末粒子大小與外型不易均勻;而先球磨縮減 gibbsite 粉末粒徑至 1 μm 以下,再以熱水製備 boehmite 的製程較有機會獲得單離且粒徑及外型均一的粉末。(3) gibbsite 粉末經球磨使粉末粒徑縮減至 250 nm-1 μm,再經 230 °C 熱水處理 48 小時,可獲得單一粒徑 (~200-500 nm) boehmite 粉末。

    In this study, monodispersed boehmite (AlOOH) powders which were looking forward to be the precursors for the production of monodispersed α-Al2O3 powders were prepared hydrothermally using gibbsite (Al(OH)3) as raw materials. Boehmite is one of the most used precursors for producing α-Al2O3 powders in industry. However, α-Al2O3 powders obtained through the calcination of boehmite are usually characterized by vermicular outward and broad particle size distribution. One of the major reasons for this phenomenon may be due to the broad particle size distribution of boehmite. Boehmite with non-uniform sizes would result in the distraction of θ- to α-Al2O3 phase transformation. α-Al2O3 crystallites formed earlier would grow to behave as vermiculated outward during the subsequent thermal treatment.
    The effect of reaction temperature on fabrication of boehmite was examined firstly. Then, an appropriate reaction temperature among them was chose as the following experimental condition. Two processes were adopted to prepare monodispersed boehmite in this study. (1) Boehmite was prepared hydrothermally from gibbsite firstly, and then ball-milled to a specific size. (2) Gibbsite was ball-milled to a specific size firstly, and then the pre-treated gibbsite was used as staring materials to produce boehmite hydrothermally. The XRD technique was used to examine the formation of boehmite. And the PSD, BET, SEM, and TEM techniques were used to examine the particle size distribution, particles size, and morphology of the boehmite, respectively. The results showed that:
    (1) The rate of gibbsite to boehmite transformation can be facilitated by higher reaction temperature of hydrothermal treatment as well as smaller size of gibbsite. Furthermore, the duration of formation of pure boehmite can be shortened.
    (2) It is not easy to obtain boehmite powders with uniform particle size and outward using the former process. Alternatively, the latter process seems to be a practicable one to fabricate boehmite powders with uniform particle size and outward.
    (3) Monodispersed boehmite powders with particle size ranging from 200-500 nm can be fabricated by hydrothermal treatment of the pre-milled gibbsite (250 nm-1 μm) at 230 °C for 48h.

    摘要 I Abstract II 誌謝 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 2 第二章 理論基礎與前人研究 3 2.1 Gibbsite 與 Boehmite 3 2.1.1 Gibbsite 3 2.1.2 Boehmite 4 2.2 熱水法 (Hydrothermal method) 8 2.2.1 熱水法簡介 8 2.2.2 熱水法優點 8 2.2.3 熱水法機制 10 2.3 以熱水法製備boehmite粉末之研究 14 2.4 動力學 21 2.4.1 Arrhenius方程式 21 2.4.2 Johnson-Mehl-Avrami (JMA) 模式 21 2.5 研磨對粉末之影響 22 第三章 實驗方法及步驟 26 3.1 實驗構想與設計 26 3.2 實驗步驟 26 3.2.1 起始gibbsite原料 26 3.2.2 Boehmite粉末製備 26 3.2.3 研磨 boehmite 粉末 29 3.2.4 縮減 gibbsite 粒徑後再以熱水法製備 boehmite 粉末 29 3.3 特性分析 34 3.3.1 粉末結晶相及定量分析 34 3.3.2 粒度分佈量測 34 3.3.3 BET比表面積測定 34 3.3.4 顯微結構分析 34 第四章 結果與討論 36 4.1 熱水處理溫度對相轉換為boehmite粉末之影響 36 4.1.1 處理溫度對粉末轉換速度的影響 36 4.1.2 處理溫度對製備的boehmite粉末之外型及大小的影響 43 4.2 研磨對熱水法製備的boehmite粉末之影響 46 4.3 縮減gibbsite粉末粒徑對轉換成boehmite粉末之影響 51 4.3.1 起始粉末大小對粉末轉換速度的影響 51 4.3.2 起始粉末粒徑對轉換之boehmite粉末外型及大小的影響 56 4.4 綜合討論 64 第五章 結論 65 參考文獻 66 附錄 71

    1. V. I. Lopushan, G. F. Kuznetsov, R. N. Pletnev, and D. G. Kleshev, “Kinetics of phase transitions of gibbsite during heat treatment in air and in water vapor,” Refract. Ind. Ceram., 48 [5] 378-382 (2007).
    2. X. Y. Chen, Z. J. Zhang, X. L. Li, and S. W. Lee, “Controlled hydrothermal synthesis of colloidal boehmite (γ-AlOOH) nanorods and nanoflakes and their conversion into γ-Al2O3 nanocrystals,” Solid State Commun., 145 368-373 (2008).
    3. A.Violante and P. M. Huang, “Influence of inorganic and organic ligands on the formation of aluminum hydroxides and oxyhydroxides,” Clays Clay Miner., 33 181-192 (1985).
    4. M. K. B. Day and V.J. Hill, “The thermal transformations of the aluminas and their hydrates,” J. Phys. Chem., 57 946-950 (1953).
    5. H. Ginsberg and M. Koester, “Note on the aluminum oxide monohydrate,” Z. Anorg. Allgem. Chem., 271 41-48 (1952).
    6. H. C. Stumpf, A. S. Russell, J. W. Newsome, and C.M. Tucker, “Thermal transformations of aluminas and alumina hydrates,” Ind. Eng. Chem., 42 1398-1403 (1950).
    7. S. Shigeyuki and R. Rustum, “Hydrothermal synthesis of fine oxide powders,” Bull. Mater. Sci., 23 [6] 453-460 (2000).
    8. W. L. Suchanek and R. E. Riman, “Hydrothermal synthesis of advanced ceramic powders,” Adv. Sci. Tech., 45 184-193 (2006).
    9. T. Sugimoto, Monodispersed Particles, Elsevier, Amsterdam, 2001.
    10. K. Wefers and G. M. Bell, “Oxide and hydroxides of alumina,” Technical Paper No.19, Alcoa Research Laboratories (1972).
    11. 黃啟祥、林江財,氧化鋁,陶瓷技術手冊(下),683-685,中華民國產業科技發展協進會與中華民國粉末冶金協會出版。民國83年7月。
    12. B. C. Lippens and J. J. Steggerda, “Active alumina” in Physical and Chemical Aspects of Adsorbents and Catalysts, B. GLinsen Ed., Academic Press, New York, 171 (1970).
    13. G. W. Brindley and J. O. Choe, “The reaction series, Gibbsite→ Chi alumina→ Kappa alumina→ Corundum,” Am. Mineral., 46 771-785 (1961).
    14. H. Saalfeld, “The dehydration of gibbsite and the structure of a tetragonal γ-Al2O3,” Clay Min. Bull., 3 249-257 (1958).
    15. F. J. Ewing, “The crystal structure of lepidocrocite,” J. Chem. Phys, 3 420-454 (1935).
    16. R. Tettenhorst and D. A. Hofmann, “Crystal chemistry of boehmite,” Clays and Clay Miner., 28 [5] 373-380 (1980).
    17. S. J. Wilson, “The development of porous microstructures during the dehydration of boehmite,” Mineralogical Magazine, 43 301-306 (1979).
    18. H. Souza Santos, P. K. Kiyohara, and P. Souza Santos, “Thermal transformation of synthetic euhedral and fibrillar crystals of boehmite into Aluminas,” Materials Res. Bull., 31 [7] 799-807 (1996).
    19. W. J. Dawson, “Hydrothermal synthesis of advanced ceramic powders,” Ceram. Bull., 67 [10] 1673-1678 (1988).
    20. 苗鴻雁、董敏、丁常勝,“水熱法製備納米陶瓷粉體技術,”中國陶瓷,40 [4] 25-28 (2004)。
    21. T. Sugimoto, “Preparation of mono dispered colloidal particles,” Adv. Colloid Interface Sci., 28 65-108 (1987).

    22. J. Eckert, C. C. H. Houston, B. L. Gersten, M. M. Lericka, and R. E. Riman, “Kinetics and mechanisms of hydrothermal synethesis of barium titanate,” J. Am. Ceram. Soc., 79 2929-2939 (1996).
    23. J. H. Lee, C. W. Won, and T. S. Kim, “Characteristics of BaTiO3 powders synthesized by hydrothermal process,” J. Mater. Sci., 35 4271-4274 (2000).
    24. Z. Chen, E. Shi, Y. Zheng, W. Li, N. Wu, and W. Zhong, “Synthesis of mono-dispersed ZnAl2O4 powders under hydrothermal condition,” Mater. Lett., 56 601-605 (2002).
    25. K. Yanagisawa, Y. Zhu, A. Onda, and K. Kajiyoshi, “Hydrothermal synthesis of mono-dispersed quartz powders,” J. Mater. Sci., 39 2931-2934 (2004).
    26. F. Shiba, M. Yokoyama, Y. Mita, T. Yamakawa, and Y. Okawa, “Hydrothermal synthesis of monodisperse WO3•H2O square platelet particles,” Mater. Lett., 61 1778-1780 (2007).
    27. J. Yan, S. Mo, J. Nie, W. Chen, X. Shen, J. Hu, G. Hao, and H. Tong, “Hydrothermal synthesis of monodisperse Fe3O4 nanoparticles based on modulation of tartaric acid,” Colloid Surf. A-Physicochem. Eng. Asp., 340 109-114 (2009).
    28. A. W. Laubengayer and R. S. Weisz, “A hydrothermal study of equilibria in the system alumina-water,” J. Am. Chem. Soc., 65 [2] 247-250 (1943).
    29. S. K. Mehta and A. Kalsotra, “Kinetices and hydrothermal transformation of gibbsite,” J. Therm. Anal., 367 267-275 (1991).
    30. P. A. Buining, C. Pathmamanoharan, M. Bosboom, J. B H. Jansen, and H. N. W. Lekkerkerker, “Effect of hydrothermal conditions on the morphology of colloidal boehmite particles: implications for fibril formation and monodispersity,” J. Am. Ceram. Soc., 73 [8] 2385-90 (1990).
    31. X. Bokhimi, J. S. Valente, and F. Pedraza, “Crystallization of sol-gel boehmite via hydrothermal annealing,” J. Solid State Chem., 166 182-190 (2002).
    32. K. Yanagisawa, D. Gushi, A. Onda, and K. Kajiyoshi, “Hydrothermal synthesis of boehmite plate crystals,” J. Ceram. Soc. Jpn., 155 [12] 894-897 (2007).
    33. N. Lepot, M.K. Van Bael, H. Van den Rul, J. D’Haen, R. Peeters, D. Franco, and J. Mullens, “Synthesis of platelet-shaped boehmite and γ-alumina nanoparticles via an aqueous route,” Ceram. Int., 34 1971-1974 (2008).
    34. G. Yamaguchi and K. Sakamoto, “Hydrothermal reaction of aluminumtrihydroxides,” Bull. Chem. Soc. Jpn., 32 696-699 (1959).
    35. A. V. Tolchev, V. I. Lopushan, and D. G. Kleshchev, “Chemical transfomations of γ-Al(OH)3 during closed-system heat treatment,”
    Inorg. Mater., 37 [12] 1274-1277 (2001).
    36. T. Tsuchida, “Hydrothermal synthesis of submicrometer crystals of boehmite,” J. Eur. Ceram. Soc., 20 1759-1764 (2000).
    37. M. Inoue, K. Kitamura, H. Tanina, H. Nakayama, and T. Inui, “Alcohothermal treatments of gibbsite : mechanisms for the Formation of Boehmite,” Clays Clay Miner., 37 [1] 71-80 (1989).
    38. C. H. Bamford and C. F. H. Tipper, Reactions in the solid state, Comprehensive Chemical Kinetics, Vol.22, Else. Sci. Pub. Co., New York, 1980.
    39. R. Miyawaki, S. Tomura, M. Okazaki, S. Satokawa, and K. Sugiyama, “Grinding of the the starting material on hydrothermal synthesis of kaolinite,” Clay Sci., 9 199-217 (1995).
    40. T. Mashiko and T. Sakamoto, “Effect of grinding on the hydrothermal transformation of sepiolite,” Nendo Kagaku, 42 [1] 6-14 (2002).
    41. A. Ahniyaz, T. Fujiwara, S. W. Song, and M. Yoshimura, “Low temperature preparation of β-LiFe5O8 fine particles by hydrothermal ball milling,” Solid State Ionics, 151 419-423 (2002).
    42. B. A. Wills, Mineral Processing Technology:An Introduction to The Practical Aspects of Ore Treatment and Mineral Recovery, Oxford, New York, 1979.
    43. H. K. Choi and W. S. Choi, “Ultra-fine Grinding Mechanism of Inorganic Powders in a Stirred Ball Mill - The Effect of Grinding Aids,” Korean J. Chem. Eng., 20 [3] 554-559 (2003).

    下載圖示 校內:2010-08-24公開
    校外:2010-08-24公開
    QR CODE