簡易檢索 / 詳目顯示

研究生: 葉玉涵
Yeh, Yu-Han
論文名稱: 設計與製作指叉狀電極於三族氮化物太陽能電池之研究
Design and fabrication of inter-digitated contact on III-nitride solar cells
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 83
中文關鍵詞: 電極電極圖案三族氮化物太陽能電池
外文關鍵詞: pattern, III-nitrides solar cell, contact
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用有機金屬化學氣相沉積系統成長出Ⅲ-Ⅴ族氮化鎵太陽能電池。在製程的過程中,我們利用AFM來對我們氮化鎵太陽能電池表面進行分析。我們在ICP參數中添加BCl3,流量20sccm下成功的將粗糙度由58.2nm降低至5.54nm。我們使用鎳/金(5nm/10nm)作為p型電極以及鈦/鋁/鎳/金(15nm/220nm/40nm/50nm)作為n型電極。嘗試不同的回火條件,得到的p型n型最佳特徵電阻值分別是:2.2×10-3 Ω .cm-2跟 2.47x10-5 Ω .cm-2。
    在後續的p-i-n結構研究中,我們嘗試了不同的本質層做出三種大小為1x1um2的試片。我們使用了X光繞射分析儀及光致發光分析三種不同本質層的試片。在X光繞射分析儀中,我們可以推算在A、B及C試片中的銦含量分別為11.15 % 、10.11 % 及 6.43 %。
    在電特性的分析,我們發現本質層全為氮化銦鎵漸變層有最佳的特性。其填充因子在A、B及C試片中分別為44.95%、55.7% 跟 64.75%。
    為了要觀察電極圖案對太陽能特性的影響,我們設計了兩組不同的電極圖案。其中不管是改變柵狀電極的根數或寬度或電極相對吸光面積的比例,我們發現有指叉狀電極的元件特性在短路電流密度以及效率皆會優於沒指叉電極的元件,且隨著柵狀電極的根數或寬度或電極相對吸光面積的比例增加,元件特性會更佳,但在填充因子以及開路電壓裡則無明顯的影響。此外我們也成功的做出較大面積3x3um2的InGaN太陽能電池在A、B、C三種試片上,在本質層全為漸變層的C試片,我們得到最佳效率為0.38%。

    In this thesis, all samples used were grown by metal organic chemical vapor deposition system (MOCVD). In order to get the optimal fabricationparameter, we try many different parameters. First, We decreased the
    roughness from 58.2nm to 5.54nm successfully by insert BCl3 into inductive coupled plasma system (ICP). We also found optimal specific contact resistance for n contact and p contact were 2.47x10-5 Ω .cm-2 and 2.2×10-3
    Ω .cm-2 , respectively.
    In the lately study, three samples with different
    i-InGaN layer’s growth condition were prepared. The i-InGaN layer properties could be also analyzed by photoluminescence system (PL) and X-ray diffraction system (XRD). From electrical analysis, we found that when the i-layer replaced for grading layer, its devices performance was the best among all other samples. It was found that the fill factor of my three samples are around 44.95%, 55.7% and 64.75%, respectively.
    In order to realize the influence of inter-digitated contact on nitride-based solar cells, we designed two series patterns. First situation of different finger numbers and finger width, we found that the device
    performance of contact with inter-digitated was better than contact without inter-digitated. With more finger numbers and larger finger width, better device performance was obtained. Second situation of different contact to
    mesa area ratio and finger width, we found that the device performance with dense ratio was better than few ratio. Short current density with and without inter-digitated contact of sample A was about 0.46 and 0.32 mA/cm2 ,
    respectively. Open voltage and fill factor of sample A were independent of inter-digitated contact. Efficiency with and without inter-digitated contact of sample A was about 0.235% and 0.175%. Short current density with and
    without inter-digitated contact of sample B was about 0.48 and 0.325 mA/cm2 , respectively. Efficiency with and without inter-digitated contact of sample B was about 0.31% and 0.15%. We also found the device
    performance of sample B was better than sample A due to the InGaN grading layer. So far, no other research group have done larger size III-nitride solar cell, according to the dislocation and defect in the epitaxy
    process. We have tried to fabricate larger size 3x3 um2 solar cell, and do the measurement.

    Contents Abstract (in Chinese)………………………………………Ι Abstract (in English)……………………………………ΙII Contents…………………………………………………………V List of Table…………………………………………………VII List of Figure………………………………………………VIII Chapter 1 Introduction……………………………………………1 1-1 Background……………………………………………………1 1-2 Motivation………………………………………………………3 Reference……………………………………………………………5 Chapter 2 Basic Theory and Measurement System……………6 2-1 Theory of solar cell………………………………………6 2-2 Theory of Metal-Semiconductor contact…………………9 2-3 Measurement instruments……………………………………12 2-3.1 The Responsivity Measurement Systems and Other Measurement Systems……………………………………………12 2-3.2 Atomic Force Microscopes (AFM)…………………12 2-3.3 X-ray Diffraction (XRD)…………………………13 2-3.4 Photoluminescence(PL) measurement…………………13 Reference…………………………………………………………22 Chapter 3 Optimization of InGaN p-i-n solar cell fabrication process…………………………………23 3-1 Fabrication process of InGaN p-i-n solar cell………23 3-2 The optimization of fabrication process on InGaN p-i-n solar cells……………………………………………25 3-2.1 ICP etching parameter……………………………25 3-2.2 Specific contact resistance by TLM…………27 Reference……………………………………………………41 Chapter 4 Design and fabrication of interdigitaled contact on III-nitride solar cells…………………………………42 4-1 The structure of InGaN solar cells………………………42 4-2 The electrical characteristics between inter-digitated contact on III-nitride solar cells with different structure…………………………43 4-3 Influence of inter-digitated contact with different pervious to light area on III-nitride solar cells…………44 4-3.1 Pattern design I………………………………………45 4-3.2 Pattern design I I……………………………………46 Reference…………………………………………………………79 Chapter 5 Conclusion and Future Work…………………………81 5-1 Conclusion………………………………………………………81 5-2 Future work……………………………………………………83

    chapter 1 :
    References
    [1] A. W.G. and D. R. E., The action of light on selenium, Proc. R. Soc. A
    25 113-7, 1876
    [2] V. Y. M. , “Potential PV materials-based InN thin films: fabrication,
    structural and optical properties,” Sol. Energy Mater. Sol. Cells, vol. 76, p.
    637, 2003.
    [3] R. R. K. , D. C. L. , C. M. F. , R. A. S. , K. M. E. , S. K. , G. S. K. , H. L.
    C. , D. D. K. , J. H. E. , and N. H. K. , “Pathways to 40% Efficient
    Concentrator Photovoltaics, “ Proceedings of the 20th Eu. PVSEC, p. 118,
    2005.
    [4] O. J. , C. H. , A. A. , D. N. , I. F. , A. D. , and S. K. , “Characterization
    and Analysis of InGaN Photovoltaic Devices,” Proceedings of the 31st IEEE
    PVSC, p. 37, 2005.
    [5] A. DEvos, Endoreversible Thermodynamics of Solar Energy Conversion,
    OUP, 1990
    [6] J. W. A. , and W. W. , “High efficiency, radiation-hard solar cells,”
    Lawrence Berkeley National Laboratory Report 56326, 2004.
    [7] M. R. I. , M. A. R. , M. E. H. , A. G. B. , M. R. I. , and A. Y. , “Projected
    performance of InxGa1-xN-based multijuction solar cells,” 4th International
    Conference on Electrical and Computer Engineering ICECE, p. 241, 2006
    [8] B. G. , “Group III nitride semiconductor compounds”, Oxford University
    Press,1998

    chapter 2 :
    References
    [1] S.M. Sze,Semiconductor devices Physics and Tecchnology, JOHN WILEY & SONS ,INC (2002) Second Edition.

    chapter 3 :
    References
    [1] B. B. , S. T. , X. W. , J.C. P. T, O. Y. , D. T. , Y. C. , H. L. , and F. O. , “Comparison between TiAl and TiAlNiAu Ohmic Contacts to n-type GaN”, Journal of Electronic Materials, Vol. 29, No, 5, 2000
    [2] T. B. W. , W. C. H. , Y. W. C. and Y. J. C. , “Inductively Coupled Plasma Mesa Etched InGaN/GaN Light Emitting Diodes Using Cl2/BCl3/Ar Plasma ”, Japanese Journal of Applied Physics Vol. 45, No. 9A, 2006
    [3] R. J. S. , L. Z. , A. G. B. , C. G. W. , and J. H. ,” Inductively coupled plasma-induced etch damage of GaN p-n junctions ” J. Vac. Sci. Technol. A 18(4), Jul/Aug 2000 .
    [4] SEMICONDUCTOR MATERIAL AND DEVICE CHARACTERIZATION, Third Edition, DIETER K. SCHRODER.
    [5] T. M. , T. K. , T. O. , Y. T. , S. N. , S. Y. , S.
    A. , N. S. , and M. K. , Appl. Phys. Lett. 69, 3537 , 1996.

    chapter 4 :
    References
    [1] J. K. S. , C. C. Y. , S. J. T. , K. H. C. , M. L. L. , W. C. L. , and L. C. P. “Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers
    ”, IEEE , VOL. 30, NO. 3, MARCH 2009
    [2] O. J. , B. J. , M. M. , H. Y. , I. F. , R. O. , C. H.
    ” OPTIMIZATION OF GaN WINDOW LAYER FOR InGaN SOLAR
    CELLS USING POLARIZATION EFFECT ”
    [3] O. J. and I. F. , C. H. , S. K. , “Design and characterization of GaN/InGaN solar cells”, Appl. Phys. Lett. 91, 132117 ,2007.
    [4] C. J. N. , N. G. T. , S. C. C. , M. I. , S. P. D. , and U. K. M. “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap”, Appl. Phys. Lett, 93, 143502 ,2008.
    [5] K. N. , T. T. , T. A. , M. K. , Y. U. , T. F. ” Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator
    photovoltaic systems ” Solar Energy Materials & Solar Cells 90,1308–1321 ,2006
    [6] M. J. O’Neill, A.J. M. , M.F. P. , M. I. E. , P.A. J. , C. C. , D. L. E. H.W. B. , Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, p. 1135, 2000.
    [7] D.D. K. , G.S. G. , B. B. , M. T. , R.A. S., D.R. L. , N.H. K. , Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, p. 1165 , 2000
    [8] K. N. , T. T. , W. N. , T. A. , M. K. , Y. U. , T. F. , Proceedings of the 80
    Third World Conference on Photovoltaic Energy Conversion, p. 3P-C3-71. ,2003
    [9] K. N. , T. T. , T. A. , M. K. , Y. U. , T. F. , Jpn. J. Appl. Phys. 43 (3) 882. 2004.
    [10] J. R. S. , P. H. M. , Solar Cells 27 623. 1989.
    [11] Z. O. , M. C. , Solid-State Electron. 43 (1999) 1985.
    [12] J. Z. , A W. , P.P. A. , M.A. G. , Proceedings of the 26th IEEE Photovoltaic Specialists Conference, Anaheim, p. 227. , 1997.

    下載圖示 校內:2014-08-19公開
    校外:2014-08-19公開
    QR CODE