簡易檢索 / 詳目顯示

研究生: 歐翰融
Ou, Han-Rong
論文名稱: 非對稱U型金屬奈米結構超穎介面光學特性之研究並應用於偏振轉換
The Study of Asymmetric U-shaped Gold Metasurface and Its Applications to Polarization Switch
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 112
中文關鍵詞: 手性超穎介面偏振轉換嚴格耦合分析(RCWA)奈米轉印手性分子偵測
外文關鍵詞: Chiral metasurface, Polarization switch, Rigorous coupled-wave analysis (RCWA), Nanotransfer printing, Chirality detection
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出非對稱U型奈米結構的金屬超穎介面的光學分析與奈米製作以及偵測應用。根據光學矩陣分析理論與Stokes parameter的光學分析理論,利用嚴格耦合分析法針對非對稱U型奈米結構進行模擬,探討在各種不同條件下,x/y線性偏振入射的方位旋轉角以及橢偏率變化。由於其強烈的手性光學響應,在紅外光波段產生顯著的手性光學訊號,並在x/y線性偏振入射時,分別具有右/左圓的偏振變化,藉此達到偏振轉換的研究目的。
    利用奈米轉印技術成功製作出不對稱U型金超穎介面,配合工作模具的製程與清洗,達到低成本、快速、可重複使用的生產訴求。透過自行架設Stokes parameter光學量測系統獲取Stokes parameter,經由公式換算獲得方位旋轉角以及橢偏率。利用x線性偏振入射可得到橢偏率sin2η為0.548的右圓偏振變化;y線性偏振入射得到橢偏率sin2η為-0.987的左圓偏振變化,分析模擬結果與量測結果確認具有一致性,並探討製程上的影響因素。
    手性分子存在不同的旋性,在藥學上分別會有不同的藥性與毒性,因此手性分子的偵測與分析對於製藥的過程扮演相當重要的角色。近年來有其他研究指出,利用手性超穎材料可作為分子旋性的感測系統。本研究藉由結構存在正交旋性變化的特性,透過正向入射與背向入射的方式,分別利用x/y線性偏振入射,偵測手性分子刀豆素(Concanavalin A)旋性,並獲得一致的偵測結果,說明手性分子偵測應用的可行性。

    In this master thesis, we propose a chiral metasurface based on gold asymmetric U-shaped nano structures (AUSNS) with different side length. The optical characteristic is calculated by exploiting rigorous coupled-wave analysis (RCWA); that is, the azimuth angle Ψ and ellipticity sin2η. The giant optical response is observed in the near-infrared region with linear x- and y-polarization wave normal incidence. In order to analyze the chiroptical response, we introduced the complex Jones matrix and Stokes parameters to calculate the ellipse parameters of polarization states (Ψ & sin2η). We made use of the air pressure-assisted thermal imprinting to fabricate the Si mold, deposited gold layer using the E-gun evaporator on Si mold and exploited the nanotransfer printing technique to transfer the gold structures to polycarbonate (PC) substrate. We measured the Stoke parameters of the emergent light after the AUSNS metasurface through the self-erecting optical characterization microscopy system and we acquired the azimuth angle Ψ and ellipticity sin2η by equation. Its ellipticity can reach 0.548 right-handed circularly polarized and -0.978 left-handed circularly polarized with linear x- and y-polarization wave normal incidence, respectively, which occurs closely near the same region. The plasmonic property of chiral-selective applies to realize polarization switch. In chirality detection, we investigated concanavalin A, the common biomolecules of proposed research. We compared the results in linear x- and y-polarization forward incidence with backward incidence, respectively and demonstrated the right-hand characteristic of concanavalin A. It indicates that AUSNS has the potential to develop chiral detection.

    口試證明 i 摘要 ii The Study of Asymmetric U-shaped Gold Metasurface and Its Applications to Polarization Switch iii 致謝 xii 目錄 xiii 表目錄 xv 圖目錄 xvi 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 表面電漿簡介 4 2.2 週期性結構之超穎材料 5 2.3 手性超穎材料 6 2.4 手性分子感應 9 第三章 研究方法與理論介紹 18 3.1 手性超穎材料的光學分析理論 18 3.1.1 線偏振與圓偏振穿透係數之間的關係 18 3.1.2 手性結構的光學分析理論 19 3.1.3 Stokes parameter的光學分析理論 21 3.2 數值模擬方法 27 3.3 超穎材料製作 28 3.3.1 二氧化矽母模的製作 29 3.3.2 工作矽模具的製作 29 3.3.3 超穎材料之金屬轉印 32 3.4 超穎材料光學性質量測 33 3.4.1 Stokes parameter的量測方法 34 3.4.2 Stokes parameter的量測架構與實驗流程 40 3.5 手性分子量測方法 42 3.5.1 結構之折射率靈敏度模擬與測量 43 3.5.2 手性分子測量 43 3.5.2.1 實驗材料 43 3.5.2.2 實驗材料配置 44 3.5.2.3 手性分子測量流程 44 第四章 實驗結果與討論 53 4.1 週期性AUSNS的光學模擬 53 4.1.1 固定週期,改變臂長 53 4.1.2 固定臂長,改變二維週期 54 4.1.3 固定臂長,改變一維週期 55 4.2 超穎材料製程結果 57 4.3 光學量測結果 59 4.3.1 AUSNS超穎介面量測結果 59 4.3.2 結構形貌對光譜影響 61 4.3.3 結構壓陷深度對光譜影響 61 4.4 影響機制 62 4.4.1 電磁係數分析 62 4.4.2 物理機制分析 63 4.5 手性分子測量應用 65 4.5.1 折射率靈敏度模擬結果 66 4.5.2 折射率靈敏度測量結果 67 4.5.3 手性分子偵測結果 68 第五章 結論與展望 103 5.1 結論 103 5.2 未來展望 104 參考文獻 106

    [1] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical review letters, 2000, vol. 84, no. 18.p. 4184
    [2] D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, 2006, vol. 314, no. 5801.pp. 977-980
    [3] P. J. Stephens, "Theory of vibrational circular dichroism," The Journal of Physical Chemistry, 1985, vol. 89, no. 5.pp. 748-752
    [4] W.-Y. Chen and C.-H. Lin, "A standing-wave interpretation of plasmon resonance excitation in split-ring resonators," Optics Express, 2010, vol. 18, no. 13.pp. 14280-14292
    [5] K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem., 2007, vol. 58.pp. 267-297
    [6] E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, "Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors," Nano letters, 2007, vol. 7, no. 5.pp. 1256-1263
    [7] C. L. Haynes and R. P. Van Duyne, "Plasmon-sampled surface-enhanced Raman excitation spectroscopy," The Journal of Physical Chemistry B, 2003, vol. 107, no. 30.pp. 7426-7433
    [8] W. Zhu, F. Xiao, M. Kang, and M. Premaratne, "Coherent perfect absorption in an all-dielectric metasurface," Applied Physics Letters, 2016, vol. 108, no. 12.p. 121901
    [9] K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, "Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements," Nano letters, 2012, vol. 12, no. 3.pp. 1655-1659
    [10] W.-Y. Chen, C.-H. Lin, and W.-T. Chen, "Plasmonic phase transition and phase retardation: essential optical characteristics of localized surface plasmon resonance," Nanoscale, 2013, vol. 5, no. 20.pp. 9950-9956
    [11] J. Chen, J. Xie, Z. Wu, E. M. A. Elbashiry, and Y. Lu, "Review of beetle forewing structures and their biomimetic applications in China:(I) On the structural colors and the vertical and horizontal cross-sectional structures," Materials Science and Engineering: C, 2015, vol. 55.pp. 605-619
    [12] D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, "Light on the moth-eye corneal nipple array of butterflies," Proceedings of the Royal Society B: Biological Sciences, 2005, vol. 273, no. 1587.pp. 661-667
    [13] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, and L. Jiang, "Petal effect: a superhydrophobic state with high adhesive force," Langmuir, 2008, vol. 24, no. 8.pp. 4114-4119
    [14] V. Smentkowski, S. Ostrowski, E. Olson, J. Cournoyer, K. Dovidenko, and R. Potyrailo, "Exploration of a butterfly wing using a diverse suite of characterization techniques," Microscopy and Microanalysis, 2006, vol. 12, no. S02.pp. 1228-1229
    [15] L. Ge, S. Sethi, L. Ci, P. M. Ajayan, and A. Dhinojwala, "Carbon nanotube-based synthetic gecko tapes," Proceedings of the National Academy of Sciences, 2007, vol. 104, no. 26.pp. 10792-10795
    [16] I. Freestone, N. Meeks, M. Sax, and C. Higgitt, "The Lycurgus cup—a roman nanotechnology," Gold bulletin, 2007, vol. 40, no. 4.pp. 270-277
    [17] D. T. Emerson, "The work of Jagadis Chandra Bose: 100 years of millimeter-wave research," IEEE Transactions on Microwave Theory and Techniques, 1997, vol. 45, no. 12.pp. 2267-2273
    [18] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," science, 2001, vol. 292, no. 5514.pp. 77-79
    [19] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," nature, 2008, vol. 455, no. 7211.p. 376
    [20] N. Yu and F. Capasso, "Flat optics with designer metasurfaces," Nature materials, 2014, vol. 13, no. 2.p. 139
    [21] N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, 2013, vol. 340, no. 6138.pp. 1304-1307
    [22] Y.-P. Jia, Y.-L. Zhang, X.-Z. Dong, M.-L. Zheng, J. Li, J. Liu, Z.-S. Zhao, and X.-M. Duan, "Complementary chiral metasurface with strong broadband optical activity and enhanced transmission," Applied Physics Letters, 2014, vol. 104, no. 1.p. 011108
    [23] J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, "High‐Efficiency Mutual Dual‐Band Asymmetric Transmission of Circularly Polarized Waves with Few‐Layer Anisotropic Metasurfaces," Advanced Optical Materials, 2016, vol. 4, no. 12.pp. 2028-2034
    [24] D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, "Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface," Scientific reports, 2015, vol. 5.p. 15020
    [25] F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, "Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach," ACS nano, 2015, vol. 9, no. 4.pp. 4111-4119
    [26] M. T. Nouman, J. H. Hwang, and J.-H. Jang, "Ultrathin terahertz quarter-wave plate based on split ring resonator and wire grating hybrid metasurface," Scientific reports, 2016, vol. 6.p. 39062
    [27] Z. Liu, Z. Li, Z. Liu, H. Cheng, W. Liu, C. Tang, C. Gu, J. Li, H.-T. Chen, and S. Chen, "Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle," ACS Photonics, 2017, vol. 4, no. 8.pp. 2061-2069
    [28] W. T. B. Kelvin, Baltimore lectures on molecular dynamics and the wave theory of light. CJ Clay and Sons, 1904.
    [29] R. Reeves and M. S. Nissen, "The AT-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure," Journal of Biological Chemistry, 1990, vol. 265, no. 15.pp. 8573-8582
    [30] R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, "Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays," Proceedings of the National Academy of Sciences, 2009, vol. 106, no. 46.pp. 19227-19232
    [31] T. Mizuno, M. Yamamoto, M. Takeuchi, and S. Shinkai, "Sugar ‘chirality’sensing using a ‘prochiral’salen–Co (II) complex," Tetrahedron, 2000, vol. 56, no. 34.pp. 6193-6198
    [32] M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Physical review letters, 2005, vol. 95, no. 22.p. 227401
    [33] "Optical Properties of Materials," in Principles of Photonics, J.-M. Liu, Ed. Cambridge: Cambridge University Press, 2016, pp. 22-65.
    [34] E. Plum, V. Fedotov, and N. Zheludev, "Extrinsic electromagnetic chirality in metamaterials," Journal of Optics A: Pure and Applied Optics, 2009, vol. 11, no. 7.p. 074009
    [35] T. W. Oates, T. Shaykhutdinov, T. Wagner, A. Furchner, and K. Hinrichs, "Gyrotropy in achiral materials: The coupled oscillator model," Advanced Materials, 2014, vol. 26, no. 42.pp. 7197-7201
    [36] I. De Leon, M. J. Horton, S. A. Schulz, J. Upham, P. Banzer, and R. W. Boyd, "Strong, spectrally-tunable chirality in diffractive metasurfaces," Scientific reports, 2015, vol. 5.p. 13034
    [37] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, 2009, vol. 325, no. 5947.pp. 1513-1515
    [38] J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, "Tapered gold-helix metamaterials as improved circular polarizers," Applied Physics Letters, 2012, vol. 100, no. 10.p. 101109
    [39] M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, "Programmable extreme chirality in the visible by helix-shaped metamaterial platform," Nano letters, 2016, vol. 16, no. 9.pp. 5823-5828
    [40] M. Decker, R. Zhao, C. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Optics letters, 2010, vol. 35, no. 10.pp. 1593-1595
    [41] Y.-P. Jia, Y.-L. Zhang, X.-Z. Dong, M.-L. Zheng, Z.-S. Zhao, and X.-M. Duan, "Tunable dual-band infrared chiral metamaterials based on double-layered asymmetric U-shape split ring resonators," Physica E: Low-dimensional Systems and Nanostructures, 2015, vol. 74.pp. 659-664
    [42] M. Hentschel, V. E. Ferry, and A. P. Alivisatos, "Optical rotation reversal in the optical response of chiral plasmonic nanosystems: The role of plasmon hybridization," Acs Photonics, 2015, vol. 2, no. 9.pp. 1253-1259
    [43] Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, "Spin-selective transmission and devisable chirality in two-layer metasurfaces," Scientific reports, 2017, vol. 7, no. 1.p. 8204
    [44] X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, and B. Ding, "Three-dimensional plasmonic chiral tetramers assembled by DNA origami," Nano letters, 2013, vol. 13, no. 5.pp. 2128-2133
    [45] C. Pan, M. Ren, Q. Li, S. Fan, and J. Xu, "Broadband asymmetric transmission of optical waves from spiral plasmonic metamaterials," Applied Physics Letters, 2014, vol. 104, no. 12.p. 121112
    [46] B. Tang, Z. Li, E. Palacios, Z. Liu, S. Butun, and K. Aydin, "Chiral-selective plasmonic metasurface absorbers operating at visible frequencies," IEEE Photonics Technology Letters, 2017, vol. 29, no. 3.pp. 295-298
    [47] J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, "All-dielectric metasurface circular dichroism waveplate," Scientific reports, 2017, vol. 7.p. 41893
    [48] Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z.-Y. Li, "Fano resonance Rabi splitting of surface plasmons," Scientific reports, 2017, vol. 7, no. 1.p. 8010
    [49] A. Hutt and S. Tan, "Drug chirality and its clinical significance," Drugs, 1996, vol. 52, no. 5.pp. 1-12
    [50] E. Ariens, "Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology," European journal of clinical pharmacology, 1984, vol. 26, no. 6.pp. 663-668
    [51] T. Eriksson, S. Björkman, and P. Höglund, "Clinical pharmacology of thalidomide," European journal of clinical pharmacology, 2001, vol. 57, no. 5.pp. 365-376
    [52] S. M. Kelly, T. J. Jess, and N. C. Price, "How to study proteins by circular dichroism," Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2005, vol. 1751, no. 2.pp. 119-139
    [53] E. Hendry, T. Carpy, J. Johnston, M. Popland, R. Mikhaylovskiy, A. Lapthorn, S. Kelly, L. Barron, N. Gadegaard, and M. Kadodwala, "Ultrasensitive detection and characterization of biomolecules using superchiral fields," Nature nanotechnology, 2010, vol. 5, no. 11.p. 783
    [54] C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, "Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures," Nano letters, 2016, vol. 16, no. 9.pp. 5806-5814
    [55] Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, "Chirality detection of enantiomers using twisted optical metamaterials," Nature communications, 2017, vol. 8.p. 14180
    [56] J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Physical Review B, 2009, vol. 79, no. 12.p. 121104
    [57] R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, "Terahertz metamaterial with asymmetric transmission," Physical Review B, 2009, vol. 80, no. 15.p. 153104
    [58] "The Polarization Ellipse," in Polarized Light, D. H. Goldstein, Ed. 3rd Edition ed.: CRC Press, 2010, pp. 54-57.
    [59] Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. Soukoulis, "Chiral metamaterials with negative refractive index based on four “U” split ring resonators," Applied Physics Letters, 2010, vol. 97, no. 8.p. 081901
    [60] J. Shi, Q. Shi, Y. Li, G. Nie, C. Guan, and T. Cui, "Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality," Scientific reports, 2015, vol. 5.p. 16666
    [61] "Stokes Polarization Parameters," in Polarized Light, D. H. Goldstein, Ed. 3rd Edition ed.: CRC Press, 2010, pp. 59-63.
    [62] C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic engineering, 2006, vol. 83, no. 4-9.pp. 1798-1804
    [63] J. Zhou and L. J. Guo, "Transition from a spectrum filter to a polarizer in a metallic nano-slit array," Scientific reports, 2014, vol. 4.p. 3614
    [64] C.-C. Liang, W.-H. Chang, and C.-H. Lin, "Nanotransfer printing of plasmonic nano-pleat arrays with ultra-reduced nanocavity width using perfluoropolyether molds," Journal of Materials Chemistry C, 2016, vol. 4, no. 20.pp. 4491-4504
    [65] M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T. Ling, M. Keil, and L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectronic Engineering, 2002, vol. 61.pp. 441-448
    [66] C.-C. Liang, M.-Y. Liao, W.-Y. Chen, T.-C. Cheng, W.-H. Chang, and C.-H. Lin, "Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles," Optics express, 2011, vol. 19, no. 5.pp. 4768-4776
    [67] C. C. Liang, C. H. Lin, T. C. Cheng, J. Shieh, and H. H. Lin, "Nanoimprinting of flexible polycarbonate sheets with a flexible polymer mold and application to superhydrophobic surfaces," Advanced Materials Interfaces, 2015, vol. 2, no. 7.p. 1500030
    [68] "Mueller Matrices for Polarizing Components," in Polarized Light, D. H. Goldstein, Ed. 3rd Edition ed.: CRC Press, 2010, pp. 93-115.
    [69] "Stokes Polarization Parameters," in Polarized Light, D. H. Goldstein, Ed. 3rd Edition ed.: CRC Press, 2010, pp. 71-74.
    [70] C. Noguez, "Surface plasmons on metal nanoparticles: the influence of shape and physical environment," The Journal of Physical Chemistry C, 2007, vol. 111, no. 10.pp. 3806-3819
    [71] F. Liu, M. M.-K. Wong, S.-K. Chiu, H. Lin, J. C. Ho, and S. W. Pang, "Effects of nanoparticle size and cell type on high sensitivity cell detection using a localized surface plasmon resonance biosensor," Biosensors and Bioelectronics, 2014, vol. 55.pp. 141-148
    [72] E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev, "Metamaterial with negative index due to chirality," Physical Review B, 2009, vol. 79, no. 3.p. 035407
    [73] V. E. e. Kochergin, A. A. e. Beloglazov, M. V. Valeiko, and P. I. Nikitin, "Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications," Quantum electronics, 1998, vol. 28, no. 5.p. 444

    無法下載圖示 校內:2024-09-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE