簡易檢索 / 詳目顯示

研究生: 劉乃瑄
Liu, Nai-Xuan
論文名稱: 台灣樹輪氧同位素作為東亞冬季季風代理指標之評估
Evaluating Taiwan Tree-Ring Oxygen Isotopes as a Proxy for the East Asian Winter Monsoon
指導教授: 陳一菁
Chen, I-Ching
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 72
中文關鍵詞: 樹輪氣候學穩定氧同位素東亞冬季季風氣團後向軌跡
外文關鍵詞: dendroclimatology, stable oxygen isotope, east asian winter monsoon, air mass backward trajectory
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 東亞冬季季風的長期變化趨勢仍未明朗,主因在於既有代理紀錄稀少、空間分布不均,以至於紀錄間常見結果不一致,限制了對冬季季風歷史變遷的整合理解。基於樹輪可能保存冬季氣候訊號之潛力,此研究使用西元1948年至2007年採集自台灣本島的樹輪纖維素穩定氧同位素(δ¹⁸O)之年解析度資料,測試其記錄冬季季風訊號之能力,探討其對冬季季風反應機制,並評估冬季季風重建可行性。研究發現,台灣樹輪δ¹⁸O第一主成分與海平面氣壓型冬季季風指數間於12月呈負相關(r = -0.47,p < 0.001)。後向軌跡類聚顯示,強季風年與弱季風年間氣團來源、軌跡路徑、軌跡頻率以及途經海面溫度存在差異,據此推論上游水汽歷程差異與海面溫度共同影響海氣交互作用,改變台灣冬季全島降水δ¹⁸O特徵,最終記錄於樹輪 δ¹⁸O。迴歸分析表明,年解析度樹輪δ¹⁸O未能可靠重建冬季季風指數,進一步發展年內解析度樹輪δ¹⁸O為增強冬季訊號之關鍵。綜合而言,此研究拓展以樹輪δ¹⁸O作為代理指標重建東亞冬季季風之潛力,並對樹輪δ¹⁸O如何記錄冬季季風訊號提出可供檢驗之機制。

    Long-term variability of the East Asian Winter Monsoon (EAWM) remains unclear, while tree rings potentially preserve winter climate signals. This study used approximately 60 years of tree-ring cellulose stable oxygen isotope (δ¹⁸O) data from Taiwan to evaluate its potential as an EAWM proxy and investigate the recording mechanism. Results showed that the first principal component of Taiwan tree-ring δ¹⁸O negatively correlated with the sea level pressure-based winter monsoon index in December (r = -0.47, p < 0.001). HYSPLIT backward trajectory cluster analysis revealed differences in air mass sources, trajectory paths, frequencies, and sea surface temperatures between strong and weak monsoon years, suggesting a potential mechanism whereby tree-ring δ¹⁸O records EAWM interannual variability through changes in upstream water vapor processes and air-sea interactions. Regression analysis indicated that annual-resolution tree-ring δ¹⁸O could not reliably reconstruct EAWM. This study expands the potential of using tree-ring δ¹⁸O as a proxy indicator for reconstructing EAWM and proposes a testable mechanism for how it records winter monsoon signals.

    中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 第一章 前言 1 一、東亞季風系統的變化與現況 1 (一) 季風與東亞季風系統 1 (二) 東亞夏季季風 1 (三) 東亞冬季季風 2 (四) 當前知識缺口 3 二、古氣候學 3 (一) 古氣候學與樹輪氣候學 3 (二) 樹輪穩定氧同位素分餾機制 5 (三) 樹輪穩定氧同位素氣候學 5 (四) 樹輪穩定氧同位素記錄冬季訊號之潛在可能性 6 三、研究目的 7 第二章 材料與方法 8 一、研究脈絡 8 二、研究材料 8 (一) 研究區域 8 (二) 樹輪穩定氧同位素數據 9 (三) 氣候數據 10 三、統計分析 11 (一) 主成分分析 11 (二) 經驗正交函數分析 11 (三) 相關性分析 12 (四) HYSPLIT後向軌跡分析與類聚分析 12 (五) 線性迴歸分析 13 第三章 結果 15 一、樹輪穩定氧同位素主成分分析結果 15 二、台灣氣候資料經驗正交函數分析結果 15 (一) 台灣降水經驗正交函數 15 (二) 台灣溫度經驗正交函數 15 三、相關性分析結果 16 (一) 樹輪穩定氧同位素與冬季季風指數 16 (二) 冬季季風指數與台灣區域氣候 16 (三) 樹輪穩定氧同位素與台灣區域氣候 16 四、HYSPLIT後向軌跡分析與類聚分析結果 16 (一) 長期平均類聚結果 16 (二) 季風強年與弱年類聚結果 17 五、迴歸分析結果 18 第四章 討論 19 一、台灣樹輪穩定氧同位素主成分對冬季季風訊號的紀錄 19 (一) 樹輪穩定氧同位素主成分特徵 19 (二) 樹輪穩定氧同位素對冬季季風訊號的紀錄 19 二、台灣氣候作為中介路徑之檢驗 20 (一) 台灣區域氣候經驗正交函數主模態特徵 20 (二) 冬季季風與台灣區域氣候的關聯 20 (三) 樹輪穩定氧同位素對台灣區域氣候的反應 20 三、基於HYSPLIT的水汽來源探討 21 (一) 長期類聚平均軌跡與過往研究一致 21 (二) 強弱季風年間類聚平均軌跡差異 22 四、重建東亞冬季季風之挑戰 23 (一) 冬季季風訊號強度不足 23 (二) 研究時空尺度與分析限制 23 五、未來研究方向 24 (一) 樹輪穩定氧同位素年內解析度技術 24 (二) 完整水源樣本採集 24 (三) 量化海氣交互作用與背景訊號 24 (四) 擴展樣本涵蓋空間 25 第五章 結論 26 參考文獻 27 附錄 38

    王思皓(2013)。應用合歡山冷杉樹輪穩定氧同位素重建台灣高山232年氣候。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/wnzk2k。
    林士堯,楊承道(民 114年 3月 1日)。網格化觀測資料說明文件(2.8版)。[民 114年 8月 12日],取自臺灣氣候變遷推估資訊與調適知識平台:https://tccip.ncdr.nat.gov.tw/upload/data_document/20220708162241.pdf
    陳信豪(2015)。利用樹輪穩定氧同位素重建台灣霧林帶歷史氣候變異。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/57q3tf。
    高培根(2016)。東亞冬季季風:年代際變化、突變與減弱趨勢。﹝博士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/apjujg。
    張瑛鑠(2020)。以樹輪穩定氧同位素重建台江內海的歷史氣候。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/m8s2vg。
    Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T., & Goldsmith, G. R. (2019). Seasonal origins of soil water used by trees. Hydrology and Earth System Sciences, 23(2), 1199-1210.
    Anthropic. (2025). Claude 4.5 Sonnet. [Large language model]. https://claude.ai/
    Ao, H., Liebrand, D., Dekkers, M. J., Roberts, A. P., Jonell, T. N., Jin, Z., Song, Y., Liu, Q., Sun, Q., & Li, X. (2024). Orbital-and millennial-scale Asian winter monsoon variability across the Pliocene–Pleistocene glacial intensification. Nature communications, 15(1), 3364.
    Araguás‐Araguás, L., Froehlich, K., & Rozanski, K. (1998). Stable isotope composition of precipitation over southeast Asia. Journal of Geophysical Research: Atmospheres, 103(D22), 28721-28742.
    Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer, M., Plattner, G.-K., & Rogelj, J. (2021). Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; technical summary.
    Bai, H., Hu, H., Ren, X., Yang, X. Q., Zhang, Y., Mao, K., & Zhao, Y. (2023). The impacts of East China Sea Kuroshio front on winter heavy precipitation events in Southern China. Journal of Geophysical Research: Atmospheres, 128(4), e2022JD037341.
    Baldini, J. U., Lechleitner, F. A., Breitenbach, S. F., van Hunen, J., Baldini, L. M., Wynn, P. M., Jamieson, R. A., Ridley, H. E., Baker, A. J., & Walczak, I. W. (2021). Detecting and quantifying palaeoseasonality in stalagmites using geochemical and modelling approaches. Quaternary Science Reviews, 254, 106784.
    Bradley, R. S. (1999). Paleoclimatology: reconstructing climates of the Quaternary (Vol. 68). Elsevier.
    Brantley, S. L., Eissenstat, D. M., Marshall, J. A., Godsey, S. E., Balogh-Brunstad, Z., Karwan, D. L., Papuga, S. A., Roering, J., Dawson, T. E., & Evaristo, J. (2017). Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences, 14(22), 5115-5142.
    Breitenbach, S. F., Adkins, J. F., Meyer, H., Marwan, N., Kumar, K. K., & Haug, G. H. (2010). Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth and Planetary Science Letters, 292(1-2), 212-220.
    Brendel, O., Iannetta, P. P., & Stewart, D. (2000). A rapid and simple method to isolate pure alpha-cellulose. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 11(1), 7-10.
    Brinkmann, N., Seeger, S., Weiler, M., Buchmann, N., Eugster, W., & Kahmen, A. (2018). Employing stable isotopes to determine the residence times of soil water and the temporal origin of water taken up by Fagus sylvatica and Picea abies in a temperate forest. New Phytologist, 219(4), 1300-1313.
    Bruijnzeel, L., Mulligan, M., & Scatena, F. N. (2011). Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrological Processes, 25(3), 465-498.
    Bubb, P., May, I. A., Miles, L., & Sayer, J. (2004). Cloud forest agenda. UNEP World Conservation Monitoring Centre Cambridge, UK.
    Chang, C.-P., Ding, Y., Johnson, R. H., Lau, G. N.-c., Wang, B., & Yasunari, T. (2011). Global Monsoon System, The: Research And Forecast (Vol. 5). World Scientific.
    Chang, C.-P., Wang, Z., & Hendon, H. (2006). The Asian winter monsoon. In The Asian Monsoon (pp. 89-127). Springer.
    Chen, D., Fang, K., Li, Y., Dong, Z., Zhang, Y., & Zhou, F. (2016). Response of Pinus taiwanensis growth to climate changes at its southern limit of Daiyun Mountain, mainland China Fujian Province. Science China Earth Sciences, 59(2), 328-336.
    Chen, D., Zhou, F., Dong, Z., Zeng, A. y., Ou, T., & Fang, K. (2020). A tree-ring δ18O based reconstruction of East Asia summer monsoon over the past two centuries. PLoS One, 15(6), e0234421.
    Chen, F., & Gao, Y. (2018). Evaluation of precipitation trends from high-resolution satellite precipitation products over Mainland China. Climate Dynamics, 51(9), 3311-3331.
    Chen, F., Xu, Q., Chen, J., Birks, H. J. B., Liu, J., Zhang, S., Jin, L., An, C., Telford, R. J., & Cao, X. (2015). East Asian summer monsoon precipitation variability since the last deglaciation. scientific Reports, 5(1), 1-11.
    Chen, I.-C., Hau, N.-X., Sano, M., Nakatsuka, T., Anchukaitis, K., Ngo-Duc, T., Chang, Y.-S., Chen, S.-H., Wang, S.-H., Wei, H.-L., Li, Z., Thuong, L.-T., & Minh, T. B. (2023, December 21). Upstream rainout processes govern tree-ring oxygen isotopes with implications for monsoon and tropical hydroclimate reconstruction [Preprint]. Research Square. https://doi.org/10.21203/rs.3.rs-3577657/v1
    Chen, W., Zhang, R., Wu, R., Wen, Z., Zhou, L., Wang, L., Hu, P., Ma, T., Piao, J., & Song, L. (2023). Recent advances in understanding multi-scale climate variability of the Asian monsoon. Advances in Atmospheric Sciences, 40(8), 1429-1456.
    Cho, A., Lim, J., Kim, Y., & San Ahn, U. (2022). Variability of East Asian winter monsoon during Middle–Late Holocene: A study based on a crater lake on Jeju Island, South Korea. Palaeogeography, Palaeoclimatology, Palaeoecology, 603, 111193.
    Cook, E. R., Briffa, K. R., & Jones, P. D. (1994). Spatial regression methods in dendroclimatology: a review and comparison of two techniques. International Journal of Climatology, 14(4), 379-402.
    Cook, E. R., & Kairiukstis, L. A. (2013). Methods of dendrochronology: applications in the environmental sciences. Springer Science & Business Media.
    Correa, A., Birkel, C., Gutierrez, J., Dehaspe, J., Durán‐Quesada, A. M., Soulsby, C., & Sánchez‐Murillo, R. (2020). Modelling non‐stationary water ages in a tropical rainforest: A preliminary spatially distributed assessment. Hydrological Processes, 34(25), 4776-4793.
    Dansgaard, W. (1964). Stable isotopes in precipitation. tellus, 16(4), 436-468.
    DeNiro, M. J., & Epstein, S. (1979). Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide, and water. Science, 204(4388), 51-53.
    Ding, Y., & Chan, J. C. (2005). The East Asian summer monsoon: an overview. Meteorology and Atmospheric Physics, 89(1), 117-142.
    Dodd, J. P., Patterson, W. P., Holmden, C., & Brasseur, J. M. (2008). Robotic micromilling of tree-rings: a new tool for obtaining subseasonal environmental isotope records. Chemical Geology, 252(1-2), 21-30.
    Dolman, A. M., & Laepple, T. (2018). Sedproxy: a forward model for sediment-archived climate proxies. Climate of the Past, 14(12), 1851-1868.
    Dongmann, G., Nürnberg, H., Förstel, H., & Wagener, K. (1974). On the enrichment of H218O in the leaves of transpiring plants. Radiation and environmental biophysics, 11(1), 41-52.
    Du, S., Xiang, R., Yang, Z., Guo, Z., Saito, Y., & Fan, D. (2019). Late-Holocene high-frequency East Asia Winter Monsoon variability inferred from the environmentally sensitive grain size component in the distal shelf mud area, East China Sea. The Holocene, 29(1), 3-16.
    Duan, J., Zhang, Q.-B., & Lv, L.-X. (2013). Increased variability in cold-season temperature since the 1930s in subtropical China. Journal of Climate, 26(13), 4749-4757.
    Ellsworth, P. V., Anderson, W. T., Sonninen, E., Barbour, M. M., & Sternberg, L. S. (2013). Reconstruction of source water using the δ18O of tree ring phenylglucosazone: A potential tool in paleoclimate studies. Dendrochronologia, 31(3), 153-158.
    Erb, M. P., McKay, N. P., Steiger, N., Dee, S., Hancock, C., Ivanovic, R. F., Gregoire, L. J., & Valdes, P. (2022). Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation. Climate of the Past, 18(12), 2599-2629.
    Fenies, P., Bassetti, M.-A., Riveiros, N. V., Menniti, C., Frigola, C., Babonneau, N., Ratzov, G., Hsu, S.-K., & Su, C.-C. (2023). Changes in Kuroshio Current dynamics and East Asian monsoon variability during the last 26 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 632, 111836.
    Fritts, H. (2012). Tree rings and climate. Elsevier.
    Galewsky, J., Steen‐Larsen, H. C., Field, R. D., Worden, J., Risi, C., & Schneider, M. (2016). Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Reviews of Geophysics, 54(4), 809-865.
    Gao, Y., Sun, J., Yu, S., & He, S. (2025). Relationship of Decadal Variations in East Asian Winter Monsoon and Northwestern North Pacific SST in CMIP6 Preindustrial Long-Term Simulations. Journal of Climate, 38(3), 815-834.
    Geen, R., Bordoni, S., Battisti, D. S., & Hui, K. (2020). Monsoons, ITCZs, and the concept of the global monsoon. Reviews of Geophysics, 58(4), e2020RG000700.
    Goldsmith, G. R., Allen, S. T., Braun, S., Siegwolf, R. T., & Kirchner, J. W. (2022). Climatic influences on summer use of winter precipitation by trees. Geophysical Research Letters, 49(10), e2022GL098323.
    Goldsmith, G. R., Muñoz‐Villers, L. E., Holwerda, F., McDonnell, J. J., Asbjornsen, H., & Dawson, T. E. (2012). Stable isotopes reveal linkages among ecohydrological processes in a seasonally dry tropical montane cloud forest. Ecohydrology, 5(6), 779-790.
    Goodkin, N. F., Samanta, D., Bolton, A., Ong, M. R., Hoang, P. K., Vo, S. T., Karnauskas, K. B., & Hughen, K. A. (2021). Natural and anthropogenic forcing of multi‐decadal to centennial scale variability of sea surface temperature in the South China Sea. Paleoceanography and Paleoclimatology, 36(10), e2021PA004233.
    Grove, J. M. (2019). The little ice age. Routledge.
    Hara, M. (2010). Climatic and historical factors controlling horizontal and vertical distribution patterns of two sympatric beech species, Fagus crenata Blume and Fagus japonica Maxim., in eastern Japan. Flora-Morphology, Distribution, Functional Ecology of Plants, 205(3), 161-170.
    Harvey, J. E., Smiljanić, M., Scharnweber, T., Buras, A., Cedro, A., Cruz‐García, R., Drobyshev, I., Janecka, K., Jansons, Ā., & Kaczka, R. (2020). Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Global Change Biology, 26(4), 2505-2518.
    Hau, N.-X., Sano, M., Nakatsuka, T., Chen, S.-H., & Chen, I.-C. (2023). The modulation of Pacific Decadal Oscillation on ENSO-East Asian summer monsoon relationship over the past half-millennium. Science of the Total Environment, 857, 159437.
    Hernández, A., Martin-Puertas, C., Moffa-Sánchez, P., Moreno-Chamarro, E., Ortega, P., Blockley, S., Cobb, K. M., Comas-Bru, L., Giralt, S., & Goosse, H. (2020). Modes of climate variability: Synthesis and review of proxy-based reconstructions through the Holocene. Earth-Science Reviews, 209, 103286.
    Hu, J., Emile‐Geay, J., Nusbaumer, J., & Noone, D. (2018). Impact of convective activity on precipitation δ 18O in isotope‐enabled general circulation models. Journal of Geophysical Research: Atmospheres, 123(23), 13,595-513,610.
    Jiao, L., Xue, R., Qi, C., Chen, K., & Liu, X. (2021). Comparison of the responses of radial growth to climate change for two dominant coniferous tree species in the eastern Qilian Mountains, northwestern China. International Journal of Biometeorology, 65(11), 1823-1836.
    Kaboth-Bahr, S., Bahr, A., Zeeden, C., Yamoah, K. A., Lone, M. A., Chuang, C.-K., Löwemark, L., & Wei, K.-Y. (2021). A tale of shifting relations: East Asian summer and winter monsoon variability during the Holocene. scientific Reports, 11(1), 6938.
    Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., & Woollen, J. (2018). The NCEP/NCAR 40-year reanalysis project. In Renewable energy (pp. Vol1_146-Vol141_194). Routledge.
    Kang, S., Du, J., Wang, N., Dong, J., Wang, D., Wang, X., Qiang, X., & Song, Y. (2020). Early Holocene weakening and mid-to late Holocene strengthening of the East Asian winter monsoon. Geology, 48(11), 1043-1047.
    Kang, S., Wang, X., Du, J., & Song, Y. (2022). Paleoclimates inform on a weakening and amplitude-reduced East Asian winter monsoon in the warming future. Geology, 50(11), 1224-1228.
    Kao, P.-k., Chih-wen, H., & Huang-Hsiung, H. (2016). Decadal variation of the East Asian winter monsoon and Pacific decadal oscillation. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 27(5), 6.
    Kim, J.-S., Kug, J.-S., Jeong, S., Yoon, J.-H., Zeng, N., Hong, J., Jeong, J.-H., Zhao, Y., Chen, X., & Williams, M. (2022). Arctic warming-induced cold damage to East Asian terrestrial ecosystems. Communications Earth & Environment, 3(1), 16.
    Klemm, O., Chang, S.-C., & Hsia, Y.-J. (2006). Energy fluxes at a subtropical mountain cloud forest. Forest Ecology and Management, 224(1-2), 5-10.
    Lamb, H. H., & Lamb, H. H. (1986). Climatic history and the future.
    Laskar, A. H., Huang, J.-C., Hsu, S.-C., Bhattacharya, S. K., Wang, C.-H., & Liang, M.-C. (2014). Stable isotopic composition of near surface atmospheric water vapor and rain–vapor interaction in Taipei, Taiwan. Journal of Hydrology, 519, 2091-2100.
    LeGrande, A., & Schmidt, G. (2009). Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Climate of the Past, 5(3), 441-455.
    Li, D., Li, T., Jiang, H., Björck, S., Seidenkrantz, M. S., Zhao, M., Sha, L., & Knudsen, K. L. (2018). East Asian winter monsoon variations and their links to arctic sea ice during the last millennium, inferred from sea surface temperatures in the Okinawa Trough. Paleoceanography and Paleoclimatology, 33(1), 61-75.
    Li, L., Dolman, A. J., & Xu, Z. (2016). Atmospheric moisture sources, paths, and the quantitative importance to the Eastern Asian monsoon region. Journal of Hydrometeorology, 17(2), 637-649.
    Lin, T.-W., Kaboth-Bahr, S., Yamoah, K. A., Bahr, A., Burr, G., Chang, Y.-P., Dietze, E., Li, H.-C., Su, C.-C., & Yam, R. S. (2021). East Asian winter monsoon variation during the last 3000 years as recorded in a subtropical mountain lake, northeastern Taiwan. The Holocene, 31(9), 1430-1442.
    Liu, Y., Cobb, K. M., Song, H., Li, Q., Li, C.-Y., Nakatsuka, T., An, Z., Zhou, W., Cai, Q., & Li, J. (2017). Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nature communications, 8(1), 15386.
    Loader, N., McCarroll, D., Barker, S., Jalkanen, R., & Grudd, H. (2017). Inter-annual carbon isotope analysis of tree-rings by laser ablation. Chemical Geology, 466, 323-326.
    Lyu, W., Yang, J., Fu, T., Chen, Y., Hu, Z., Tang, Y. Z., Lan, J., Chen, G., Su, Q., & Xu, X. (2020). Asian monsoon and oceanic circulation paced sedimentary evolution over the past 1,500 years in the central mud area of the Bohai Sea, China. Geological Journal, 55(7), 5606-5618.
    Ma, S., & Zhu, C. (2019). Extreme cold wave over East Asia in January 2016: A possible response to the larger internal atmospheric variability induced by Arctic warming. Journal of Climate, 32(4), 1203-1216.
    Ma, T., & Chen, W. (2021). Climate variability of the East Asian winter monsoon and associated extratropical–tropical interaction: A review. Annals of the New York Academy of Sciences, 1504(1), 44-62.
    Maher, B. A., & Thompson, R. (2012). Oxygen isotopes from Chinese caves: records not of monsoon rainfall but of circulation regime. Journal of Quaternary Science, 27(6), 615-624.
    McCarroll, D., & Loader, N. J. (2004). Stable isotopes in tree rings. Quaternary Science Reviews, 23(7-8), 771-801.
    Miao, J., & Wang, T. (2020). Decadal variations of the East Asian winter monsoon in recent decades. Atmospheric Science Letters, 21(4), e960.
    Miguez-Macho, G., & Fan, Y. (2021). Spatiotemporal origin of soil water taken up by vegetation. Nature, 598(7882), 624-628.
    OCHA: Office for the Coordination of Humanitarian Affairs. (2017, July 19). Asia-Pacific: Historical Monthly Data on Average Precipitation and Tropical Storms: Average Monthly Precipitation (1970 - 2000) and All Recorded Tropical Storms (1956 - 2016). Retrieved 2023, July 17. From relifweb. https://reliefweb.int/node/2133144
    OpenAI. (2025). ChatGPT-4o. [Large language model]. https://chatgpt.com/
    Pausata, F. S. R., Battisti, D. S., Nisancioglu, K. H., & Bitz, C. M. (2011). Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geoscience, 4(7), 474-480. https://doi.org/10.1038/ngeo1169
    Pavlyutkin, B. I., Yabe, A., Golozoubov, V. V., & Simanenko, L. F. (2016). Miocene floral changes in the Circum-Japan Sea areas—their implications in the climatic changes and the time of Japan Sea opening. Memoirs of the National Museum of Nature and Science, 51, 109-123.
    Pei, L., Yan, Z., Sun, Z., Miao, S., & Yao, Y. (2018). Increasing persistent haze in Beijing: potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends. Atmospheric Chemistry and Physics, 18(5), 3173-3183.
    Peng, T.-R., Wang, C.-H., Huang, C.-C., Fei, L.-Y., Chen, C.-T. A., & Hwong, J.-L. (2010). Stable isotopic characteristic of Taiwan's precipitation: A case study of western Pacific monsoon region. Earth and Planetary Science Letters, 289(3-4), 357-366.
    Posit.team. (2025). RStudio: Integrated Development Environment for R. In Posit Software, PBC. http://www.posit.co/.
    Rahman, M. H., Kudo, K., Yamagishi, Y., Nakamura, Y., Nakaba, S., Begum, S., Nugroho, W. D., Arakawa, I., Kitin, P., & Funada, R. (2020). Winter-spring temperature pattern is closely related to the onset of cambial reactivation in stems of the evergreen conifer Chamaecyparis pisifera. scientific Reports, 10(1), 14341.
    Rangarajan, R., Laskar, A. H., Bhattacharya, S. K., Shen, C.-C., & Liang, M.-C. (2017). An insight into the western Pacific wintertime moisture sources using dual water vapor isotopes. Journal of Hydrology, 547, 111-123.
    Rozanski, K., Araguás‐Araguás, L., & Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. Climate change in continental isotopic records, 78, 1-36.
    Sano, M., Xu, C., & Nakatsuka, T. (2012). A 300‐year Vietnam hydroclimate and ENSO variability record reconstructed from tree ringδ18O. Journal of Geophysical Research: Atmospheres, 117(D12).
    Savard, M. M. (2010). Tree-ring stable isotopes and historical perspectives on pollution–An overview. Environmental Pollution, 158(6), 2007-2013.
    Schulz, H. M., Li, C.-F., Thies, B., Chang, S.-C., & Bendix, J. (2017). Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data. PLoS One, 12(2), e0172663.
    Sheppard, P. R., Graumlich, L. J., & Conkey, L. E. (1996). Reflected-light image analysis of conifer tree rings for reconstructing climate. The Holocene, 6(1), 62-68.
    Shi, F., Goosse, H., Li, J., Yin, Q., Ljungqvist, F. C., Lian, T., Sun, C., Wang, L., Wu, Z., & Li, J. (2022). Interdecadal to multidecadal variability of East Asian summer monsoon over the past half millennium. Journal of Geophysical Research: Atmospheres, 127(20), e2022JD037260.
    Shi, Y., Xu, X., Yang, G., Du, J., Lv, J., Zhang, S., Liu, S., Liu, T., Zhang, Z., & Gao, S. (2023). High‐Resolution Records of Millennial‐Scale East Asian Winter Monsoon in the Shelf Sea of Eastern China. Geophysical Research Letters, 50(7), e2022GL102302.
    Siegwolf, R. T., Brooks, J. R., Roden, J., & Saurer, M. (2022). Stable isotopes in tree rings: inferring physiological, climatic and environmental responses. Springer Nature.
    Speer, J. H. (2010). Fundamentals of tree-ring research. University of Arizona Press.
    Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. D., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059-2077.
    Sternberg, L. D. S., Deniro, M. J., & Savidge, R. A. (1986). Oxygen isotope exchange between metabolites and water during biochemical reactions leading to cellulose synthesis. Plant Physiology, 82(2), 423-427.
    Szejner, P., Wright, W. E., Babst, F., Belmecheri, S., Trouet, V., Leavitt, S. W., Ehleringer, J. R., & Monson, R. K. (2016). Latitudinal gradients in tree ring stable carbon and oxygen isotopes reveal differential climate influences of the North American Monsoon System. Journal of Geophysical Research: Biogeosciences, 121(7), 1978-1991.
    Szejner, P., Wright, W. E., Belmecheri, S., Meko, D., Leavitt, S. W., Ehleringer, J. R., & Monson, R. K. (2018). Disentangling seasonal and interannual legacies from inferred patterns of forest water and carbon cycling using tree‐ring stable isotopes. Global Change Biology, 24(11), 5332-5347.
    Szymczak, S., Bräuning, A., Häusser, M., Garel, E., Huneau, F., & Santoni, S. (2019). The relationship between climate and the intra-annual oxygen isotope patterns from pine trees: a case study along an elevation gradient on Corsica, France. Annals of Forest Science, 76(3), 76.
    Tabor, C. R., Otto‐Bliesner, B. L., Brady, E. C., Nusbaumer, J., Zhu, J., Erb, M. P., Wong, T. E., Liu, Z., & Noone, D. (2018). Interpreting precession‐driven δ18O variability in the South Asian monsoon region. Journal of Geophysical Research: Atmospheres, 123(11), 5927-5946.
    Tan, M. (2014). Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Climate Dynamics, 42(3), 1067-1077.
    Vuille, M., Werner, M., Bradley, R., & Keimig, F. (2005). Stable isotopes in precipitation in the Asian monsoon region. Journal of Geophysical Research: Atmospheres, 110(D23).
    Wang, B. (2006). The asian monsoon. Springer Science & Business Media.
    Wang, H., & He, S. (2012). Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chinese Science Bulletin, 57(27), 3535-3540.
    Wang, L., & Chen, W. (2014). An intensity index for the East Asian winter monsoon. Journal of Climate, 27(6), 2361-2374.
    Waterhouse, J. S., Cheng, S., Juchelka, D., Loader, N. J., McCarroll, D., Switsur, V. R., & Gautam, L. (2013). Position-specific measurement of oxygen isotope ratios in cellulose: isotopic exchange during heterotrophic cellulose synthesis. Geochimica et Cosmochimica Acta, 112, 178-191.
    Wei, K., Xu, T., Du, Z., Gong, H., & Xie, B. (2014). How well do the current state-of-the-art CMIP5 models characterise the climatology of the East Asian winter monsoon? Climate Dynamics, 43(5), 1241-1255.
    Wen, C., Graf, H. F., & Ronghui, H. (2000). The interannual variability of East Asian Winter Monsoon and its relation to the summer monsoon. Advances in Atmospheric Sciences, 17(1), 48-60. https://doi.org/10.1007/s00376-000-0042-5
    Wu, B., Zhang, R., & D’Arrigo, R. (2006). Distinct modes of the East Asian winter monsoon. Monthly Weather Review, 134(8), 2165-2179.
    Xi, X. (2014). A review of water isotopes in atmospheric general circulation models: recent advances and future prospects. International Journal of Atmospheric Sciences, 2014(1), 250920.
    Xiang, R., Yang, Z., Saito, Y., Guo, Z., Fan, D., Li, Y., Xiao, S., Shi, X., & Chen, M. (2006). East Asia Winter Monsoon changes inferred from environmentally sensitive grain-size component records during the last 2300 years in mud area southwest off Cheju Island, ECS. Science in China Series D, 49(6), 604-614.
    Xu, C., Huang, R., An, W., Zhao, Q., Zhao, Y., Ren, J., Liu, Y., & Guo, Z. (2024). Tree ring oxygen isotope in Asia. Global and Planetary Change, 232, 104348.
    Xu, C., Sano, M., & Nakatsuka, T. (2013). A 400-year record of hydroclimate variability and local ENSO history in northern Southeast Asia inferred from tree-ring δ18O. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 588-598.
    Xu, C., Zheng, H., Nakatsuka, T., Sano, M., Li, Z., & Ge, J. (2016). Inter-and intra-annual tree-ring cellulose oxygen isotope variability in response to precipitation in Southeast China. Trees, 30(3), 785-794.
    Yan, H., Yang, H., Yuan, Y., & Li, C. (2011). Relationship between East Asian winter monsoon and summer monsoon. Advances in Atmospheric Sciences, 28(6), 1345-1356.
    Yancheva, G., Nowaczyk, N. R., Mingram, J., Dulski, P., Schettler, G., Negendank, J. F., Liu, J., Sigman, D. M., Peterson, L. C., & Haug, G. H. (2007). Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445(7123), 74-77.
    Yang, J., Peng, S., Xu, J., Kong, D., Tsai, H.-L., Chen, M.-T., & Song, Z. (2024). A multiproxy reconstruction of Asian winter monsoon variability since the last glacial from southeast offshore Hainan Island, South China Sea. Journal of Asian Earth Sciences, 263, 106030.
    Yang, S., Lau, K., & Kim, K. (2002). Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. Journal of Climate, 15(3), 306-325.
    Yin, Z., Wang, H., & Guo, W. (2015). Climatic change features of fog and haze in winter over North China and Huang-Huai Area. Science China Earth Sciences, 58(8), 1370-1376.
    Yu, G., Chen, Z., Piao, S., Peng, C., Ciais, P., Wang, Q., Li, X., & Zhu, X. (2014). High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences, 111(13), 4910-4915.
    Zhang, J., Yu, W., Jing, Z., Lewis, S., Xu, B., Ma, Y., Wei, F., Luo, L., & Qu, D. (2021). Coupled effects of moisture transport pathway and convection on stable isotopes in precipitation across the East Asian monsoon region: Implications for paleoclimate reconstruction. Journal of Climate, 34(24), 9811-9822.
    Zhang, X., Fan, D., Tian, Y., Sun, Z., Zhai, B., Liu, M., Chen, B., & Yang, Z. (2020). Quantitative reconstruction of the East Asian Winter Monsoon evolution over the past 100 years: Evidence from high-resolution sedimentary records of the inner continental shelf of the East China Sea. The Holocene, 30(7), 1053-1062.
    Zhao, D., Wan, S., Song, Z., Gong, X., Zhai, L., Shi, X., & Li, A. (2019). Asynchronous variation in the Quaternary East Asian winter monsoon associated with the tropical Pacific ENSO‐like system. Geophysical Research Letters, 46(12), 6955-6963.
    Zhou, X., Yang, W., Xiang, R., Wang, Y., & Sun, L. (2014). Re-examining the potential of using sensitive grain size of coastal muddy sediments as proxy of winter monsoon strength. Quaternary International, 333, 173-178.
    Zhu, M., Stott, L., Buckley, B., & Yoshimura, K. (2012). 20th century seasonal moisture balance in Southeast Asian montane forests from tree cellulose δ18O. Climatic Change, 115(3), 505-517.

    QR CODE