簡易檢索 / 詳目顯示

研究生: 陳至瑋
Chen, Jhih-Wei
論文名稱: 以光電子能譜術研究低維電子系統
Photoemission studies on the electronic structures modification of two-dimensional electron systems
指導教授: 吳忠霖
Wu, Chung-Lin
陳宜君
Chen, Yi-Chun
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 103
中文關鍵詞: 光電子能譜術低維電子系統
外文關鍵詞: photoemission, two-dimensional electron systems
相關次數: 點閱:79下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低維電子系統已被應用於量子元件上。鋁酸鑭(LaAlO3, LAO)與鈦酸鍶(SrTiO3, STO和石墨烯(Graphene)就是經典的例子。為了解導低維電子系統上的電性議題,如何直接探測電子結構變成相當重要的議題 。 光電子能譜術,做為一個非破壞性的量測,可領導我們同時了解真實與倒空間之電子結構。此優於傳統利用電性特性量測的方法。與操控的研究。 用於研究之光電子能譜術可依照其特性可分為傳統光電子能譜,掃描式光電子能譜與角解析光電子能譜。傳統光電子能譜擁有最大的探測深度,適合作為異質結構探測。掃描式光電子能譜擁有最佳空間解析力,適合做為微結構探測。而角解析光電子能譜擁有最佳能量解析度,適合做為能帶探測。
    第一章,簡單介紹 LAO/STO 與 graphene 的研究背景。第二章對光電子能譜術(Photoemission spectroscopy) 與角解析光電子能譜術 (angle-resolved photoemission spectroscopy)的原理做介紹。第三章介紹我們角解析光電子能譜的實驗工作站(ARPES work station),從組裝做細部介紹,並以單晶石墨烯為研究實例量測 LEED,XPS 與in-house ARPES。第四章,以異質接面 LAO/STO 介面上的二維電子氣為主體,透過傳統式光電子能譜量測,配合大面積控制 PZT 極化翻轉的技術,了解不同極性(極化)的電荷對 LAO/STO,對介面能帶所造成的影響。在第五章中,我們針對石墨烯graphene 的二維自由載子,以掃描式光電子能譜量測具有空間解析度的影像,並配合其光電子能譜,可了解在數m 大小下的石墨烯的電子能帶中,在 Au 金屬影響下的參雜效應。第六章,我們針對單晶石墨烯 graphene 的自由載子,以同步輻射角解析光電子能譜術量測具高能量解析度的 Dirac cone , 並了解在極少量的過渡金屬 Ti 的軌道耦合下,電子能帶將產生的高效能的參雜效應。第六章對本論文做出總結。

    The two-dimensional electron system has been wildly developed and applied into quantum electronic devices. The LAO/STO heterooxide and graphene are very classical examples. To understand conduction property of two-dimensional electron systems, it is quite essential to characterize and measure the electronic structure directly. Photoemission spectroscopy provides non-destructive measurement, which lead us to understand the intrinsic electronic structure in both of real-space and reciprocal space. This is better than the conventional metal probe measurement. The photoemission techniques used to study the two-dimensional can be classified into three techniques (i.e. XPS, SPEM and ARPES). These techniques feature in different characterization. XPS owns the deepest probing depth which is suitable for heterostructure measurement. SPEM owns the best spatial-resolution which is suitable for micro-structure measurement. ARPES owns the best energy-resolution which is suitable for electronic structure measurement.
    In this thesis, the electronic structure of low-dimensional electron system has been systematically studied by photoemission techniques. Chapter 1 introduces the research background for LAO/STO and graphene. Chapter 2 describes the principle of photoemission spectroscopy and angle-resolved photoemission spectroscopy. In Chapter 3, we introduce an ARPES work station for in-situ ARPES measurement and further characterization for graphene systems. In order to characterize the graphene, a single-crystalline graphene has been characterized by LEED, XPS and in-housed ARPES. The high-energy resolution ARPES results are displayed in Chapter 6. Chapter 4 represents the electronic structures of LAO/STO measured by XPS with respect to Pup and Pdown polarization. This enables us to understand polarization influence. Two distinct ferroelectric patterns are created and assisted by large-area scanning probe station. In Chapter 5, the metal-contact induced doping in graphene electronic structure has been characterized by SPEM. The high-spatial resolution SPEM enables us to study the doping effect inside exfoliated graphene and their core-level information. In Chapter 6, we measure the changes of electronic structures (Dirac cone) by small amount of Ti deposited onto graphene. The dz2 orbital of Ti is strongly hybridized with pz orbital of C atom, which resulting in the high doping efficiency. Chapter 7 summarizes the conclusion and suggests the future research topics.

    Contents 中文摘要 iii Abstract iv 誌謝 vi Chapter 1 1 Introduction 1 1.1 Complex oxide LAO/STO heterojunctions 1 1.2 Graphene physics 4 1.2.1 Electronic structure of graphene 4 1.3 Adatom doping in graphene 9 1.3.1 Role of pz orbital in graphene 9 1.3.2 Substitution and adsorption doping in graphene 9 Chapter 2 14 Experimental methods 14 2.1 Synchrotron radiation and Beamline information 15 2.2 Photoemission spectroscopy 19 2.3 Angle-resolved photoemission spectroscopy 24 2.4 Heterostructure PZT/LAO/STO samples 27 2.5 Characterization of graphene on Au coated SiOx 31 2.6 Growth process for epitaxial graphene 33 Chapter 3 34 in-situ ARPES work station 34 3.1 Experimental facility 34 3.2 LEED and XPS characterization 37 3.3 in-house ARPES test 39 Chapter 4 41 Ferroelectric manipulation of electronic structure at LAO/STO heterojunction 41 4.1 Ferroelectric patterns control 45 4.2 XPS studied core-level information 47 4.3 STS studied valence/conduction bands 49 4.4 Electronic structure of nonvolatile ferroelectric manipulation 52 Chapter 5 56 Electronic structure modification of graphene doping by bottom Gold metal film contact 56 5.1 SPEM/S studied graphene on Au coated SiOx substrate 58 5.2 Time-dependent core-level information 60 5.3 Electronic structure of Au metal-contact induced graphene doping 63 Chapter 6 67 Electronic structure modification of graphene efficient doping by top adsorption of Titanium adatom 67 6.1 ARPES studied electronic structure of Ti adatom induced graphene doping 69 6.1.1 Band renormalization for Ti-doped graphene 69 6.1.2 Estimation of Ti coverage 70 6.1.3 Tunable band velocity and constant of Fermi level 72 6.1.4 Measured charge transfer 75 6.2 Calculated electronic structure of Ti-doped graphene 75 6.2.1 Supercell for Ti induced doping calculation 75 6.2.2 Density of states and bonding electrons distribution 77 6.2.3 Calculated charge transfer 80 6.3 MDC linewidths analysis 81 Chapter 7 86 Concluding remarks 86 References 89 Author Vita & Publication list 100

    1. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Hagaosa and Y. Tokura, Nat. Mater. 11, 103 (2012).
    2. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez and J. -M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).
    3. A. Ohtomo and H. Y. Hwang, Nat. Mater. 427, 423 (2004).
    4. N. Nakagawa, H. Y. Hwang and D. A. Muller, Nat. Matter. 5, 204 (2006).
    5. N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Koop, A. -S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J. -M. Triscone and J. Mannhart, Science 317, 1196 (2007).
    6. A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank and H. Hilgenkamp, Nat. Matter. 6, 493 (2007).
    7. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider and J. Mannhart, Science 313, 1942 (2006).
    8. A. D. Caviglia, S. Gariglio, N. Reyren, N. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart and J. -M. Triscone, Nature 456, 624 (2008).
    9. G. Singh-Bhalla, C. Bell, J. Ravichandran, W. Siemons, Y. Hikita, S. Salahuddin, A. F. Hebard, H. Y. Hwang and R. Ramesh Triscone, Nat. Phys. 7, 80 (2011).
    10. G. Cheng, P. F. Siles, F. Bi, C. Cen, D. F. Bogorin, C. W. Park, C. M. Folkman, J. -W Park, C. -B Eom, G. Medeiros-Ribeiro and J. Levy, Nat. Nanotechnol. 6, 343 (2011).
    11. Y. Xie, C. Bell, T. Yajima, Y. Hikita and H. Y. Hwang, Nano Lett. 10, 2588 (2010).
    12. C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Anderson, C. S. Hellberg, J. Mannhart and J. Levy, Nat. Mater. 7, 298 (2007).
    13. C. W. Park, P. Sharma, Y. Wang, S. H. Baek, S. Lee, S. Ryu, C. M. Folkman, T. R. Paudel, A. Kumar, S. V. Kalinin, A. Sokolov, E. Y. Tsymbal, M. S. Rzchowski, A. Gruverman and C. B. Eom, Nano Lett. 12, 1765 (2012)
    14. F. Bi, D. F. Bogorin, C. Cen, C. W. Park, J. -W. Park, C. -B. Eom and J. Levy, Appl. Phys. Lett. 97, 173110 (2010).
    15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
    16. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos & A. A. Firsov, Nature 438, 197 (2005)
    17. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
    18. I. Gierz, C. Riedl, U. Starke, C. R. Ast, and K Kern, Nano Lett. 8, 4603 (2008).
    19. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).
    20. R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M.Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann and L. Hornekær, Nat. Mater. 9, 315 (2009).
    21. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and Eli Rotenberg, Science 313, 951 (2006)
    22. K. J. Kim, H. Lee, J. H. Choi, Y. S. Youn, J. Choi, H. Lee, T. H. Kang, M. C. Jung, H. J. Lee, S. Kim, and B. Kim, Adv. Mater. 20, 3589 (2008).
    23. H. Lim, H. J. Song, M. Son, J. Y. Baik, H. J. Shin, and H. C. Choi, Chem. Commun. 47, 8608 (2011).
    24. S. M. Hollen, G. A. Gambrel, S. J. Tjung, N. M. Santagata, E. Johnston-Halperin, and J. A. Gupta, Phys. Rev. B 91, 195425 (2015).
    25. Wouter Jolie, Fabian Craes, and Carsten Busse, Phys. Rev. B 91, 115419 (2015).
    26. Jian-Hao Chen, Liang Li, William G. Cullen, Ellen D. William, and Michael S. Fuhrer, Nat. Physics 7, 535 (2011).
    27. H. Pinto, R. Jones, J. P. Goss, and P. R. Briddon, J. Phys. Condens. Matter 21 (40), 402001 (2009).
    28. J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and Lieven M. K. Vandersypen, Nat. Mater. 7, 151 (2007).
    29. D. B. Farmer, Roksana Golizadeh-Mojarad, V. Perebeinos, Y. -M. Lin, G. S. Tulevski, J. C. Tsang, and P. Avouris, Nano Lett. 9, 388 (2009).
    30. D. Marchenko, A. Varykhalov, M. R. Scholz, G. Bihlmayer, E. I. Rashba, A. Rybkin, A. M. Shikin and O. Rader, Nat. Commun. 27, 1232 (2012).
    31. T. Abtew, B. –C. Shih, S. Banerjee, and P. Zhang, Nanoscale 5, 1902 (2013).
    32. E. Velez-Fort, C. Mathieu, E. Pallecchi, M. Pigneur, M. G. Silly, R. Belkhou, M. Marangolo, A. Shukla, F. Sirotti, and A. Ouerghi, ACS Nano 6, 10893 (2012).
    33. M. Telychko, P. Mutombo, M. Ondracek, P. Hapala, F. C. Bocquet, J. Kolorenc, M. Vondracek, P. Jelinek, and M. Svec, ACS Nano 8, 7318 (2014).
    34. D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V. K. Adamchuk, A. B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, and D. V. Vyalikh, Nano Lett. 11, 5401 (2011).
    35. L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, C. N. R. Rao, Adv. Mater. 21, 4726 (2009).
    36. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Lett. 9, 1752 (2009).
    37. T. M. Radchenko, V. A. Tatarenko, I. Yu. Sagalianov, and Yu. I. Prylutskyy, Phys. Lett. A. 378, 2270 (2014).
    38. R. Beams, L. G. Cancado, and L. Novotny, J. Phys. Condens. Matter. 27, 083002 (2015).
    39. M. Gyamfi, T. Eelbo, M. Wasniowska, and R. Wiesendanger, Phys. Rev. B 83, 153418 (2011).
    40. T. Eelbo, M. Wasniowska, M. Gyamfi, S. Forti, U. Starke, and R. Wiesendanger, Phys. Rev. B 87, 205443 (2013).
    41. T. Eelbo, M. Wasniowska, P. Thakur, M. Gyamfi, B. Sachs, T. O. Wehling, S. Forti, U. Starke, C. Tieg, A. I. Lichtenstein, and R. Wiesendanger, Phys. Rev. Lett. 110, 136804 (2013).
    42. K. T. Chan, J. B. Neaton, and Marvin L. Cohen, Phys. Rev. B 77, 235430 (2008).
    43. T. Mashoff, M. Takamura, S. Tanabe, H. Hibino, F. Beltram, and Stefan Heun, Appl. Phys. Lett. 103, 013903 (2013).
    44. National Synchrotron Radiation Research Center (NSRRC), Synchrotron Light Source (NSRRC, HsinChu, 2009).
    45. B. O. Wells, Z. X. Shen, D. S. Dessau, W. E. Spicer, D. B. Mitzi, L. Lombardo, A. Kapitulnik, and A. J. Arko, Phys. Rev. B 46, 11830 (1992).
    46. Z. X. Shen, D. S. Dessau, B. O. Wells, D. M. King, W. E. Spicer, A. J. Arko, D. Marshall, L. W. Lombardo, A. Kapitulnik, P. Dickinson, S. Doniach, T. Loeser, and C. H. Park, Phys. Rev. Lett. 70, 1553 (1993).
    47. B. O. Wells, Z. X. Shen, A. Matsuura, D. M. King, M. A. Kastner, M. Greven, and R. J. Birgeneau, Phys. Rev. Lett. 74, 964 (1995).
    48. H. Hertz, Ann Physik 267,983 (1887).
    49. A. Einstein, Ann. Physik 322, 132 (1905).
    50. S. Hufner, Photoelectron Spectroscopy: Principles and Applications (Springer, New York, 2003)
    51. G. Somerjai, Chemistry in Two Dimensions: Surfaces (Cornell University Press, Ithaca, NY, 1981).
    52. Wentao Zhang, Photoelectron Spectroscopy studies on high temperature superconductor: A study of Bi2SrCaCuO8 by Laser-based angle-resolved photoemission (Springer, New York, 2013)
    53. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, Nano Letters 7, 2758 (2007).
    54. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
    55. F. Bianco, D. Perenzoni, D. Convertino, S. L. De Bonis, D. Spirito, M. Perenzoni, C. Coletti, M. S. Vitiello and A. Tredicucci, Appl. Phys. Lett. 107, 131104 (2015).
    56. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
    57. J. Lee and A. Demkov, Phy. Rev. B 78, 3 (2008).
    58. Y. Segal, J. H. Ngai, J. W. Reiner, F. J. Walker, and C. H. Ahn, Phy. Rev. B 80, 241107 (2009).
    59. C. L. Wu, P. W. Lee, Y. C. Chen, L. Y. Chang, C. H. Chen, C. W. Liang, P. Yu, Q. He, R. Ramesh, and Y. H. Chu, Phy. Rev. B 83, 020103 (2011).
    60. V. Nagarajan, J. Junquera, J. Q. He, C. L. Jia, R. Waser, K. Lee, Y. K. Kim, S. Baik, T. Zhao, R. Ramesh, Ph. Ghosez and K. M. Rabe, J. Appl. Phys 100, 051609 (2006).
    61. I. Vrejoiu, G. L. Rhun, L. Pintilie, D. Hesse, M. Alexe, and U. Goesele, Adv. Mater. 18, 1657 (2006).
    62. C. L. Jia, V. Nagarajan, J. Q. He, L. Houben, T. Zhao, R. Ramesh, K. Urban, and R. Waser, Nature Mater. 6, 64 (2007).
    63. J. W. Park, D. F. Bogorin, C. Cen, D. A. Felker, Y. Zhang, C. T. Nelson, C. W. Bark, C. M. Folkman, X. Q. Pan, M. S. Rzchowski, J. Levy, and C. B. Eom, Nature Comm. 1, 94 (2010).
    64. S. Doniach and M. Sunjic, Journal of Physics C: Solid State Physics. 3, 285 (1970).
    65. K. J. Kim, H. Lee, J. H. Choi, Y. S. Youn, J. Choi, H. Lee, T. H. Kang, M. C. Jung, H. J. Shin, H. J. Lee, S. Kim, and B. Kim, Adv. Mater. 20, 3589 (2008).
    66. H. Lim, H. J. Song, J. H. Baik, H. J. Shin, and H. C. Choi, Chem. Commun. 47, 8608 (2011).
    67. N. Peltekis, S. Kumar, N. McEvoy, K. Lee, A. Weidlich, G. S. Duesberg, Carbon 50 ,395 (2011).
    68. G. D. Mahan, Phys. Rev. 163, 612 (1967).
    69. P. M. Th. M. van Attekum and G. K. Wertheim, Phys. Rev. Lett. 43, 1896 (1979).
    70. Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, Nano Letters 9,
    3430 (2009).
    71. Z. Klusek, P. Dabrowski, P. Kowalczyk, W. Kozlowski, W. Olejniczak, P. Blake, M. Szybowicz, and T. Runka, Appl. Phys. Lett. 95, 113114 (2009).
    72. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).
    73. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Review of Modern Physics 81, 109 (2009).
    74. K. T. Chan, J. B. Neaton, and Marvin L. Cohen, Phys. Rev. B 77, 235430 (2008).
    75. T. Mashoff , Makoto Takamura, Shinichi Tanabe, Hiroki Hibino, Fabio Beltram and Stefan Heum, Appl. Phys. Lett. 103, 013903 (2013).
    76. T. Ohta, A. Bostwick, J. L. McChesney, T. Seyller, K. Horn and Eli Rotenberg, Phys. Rev. Lett. 98, 206802 (2007).
    77. C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Phys. Rev. Lett 103 (24), 246804 (2009).
    78. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 43, 689 (2011).
    79. J. Kraus, R. Reichelt, Sebastian Gunther, L. Gregoratti, M. Amati, M. Kiskinova, A. Yulaev, I. Vlassiouk and A. Kolmakov, Nanoscale 6, 14394 (2014).
    80. T. Mashoff, D. Convertino, V. Miseikis, C. Coletti, V. Piazza, V. Tozzini, F. Beltram and S. Heun, Appl. Phys. Lett. 106, 083901 (2015).
    81. K. Pi , M. McCreary, W. Bao, Wei Han, Yan Li, S. -W. Tsai, C. N. Lau and R. K. Kawakami, Phys. Rev. B 80, 075406 (2009).
    82. F. Varchon, R. Feng, J. Hass, X. Li, B. Ngoc Nguyen, P. Mattet, J. -Y. Veuillen, C. Berger, E. C. Conrad, and L. Magaud, Phys. Rev. Lett. 99, 126805 (2007).
    83. A. Bostwick, T. Ohta, J. L. McChesney, T. Seyller, K. Horn, and Eli. Rotenberg, Solid state communications 143, 63 (2007).
    84. A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Nature Physics 3, 36 (2007).
    85. T. Schiros, D. Nordlund, L. Palova, D. Prezzi, L. Zhao, K. S. Kim, U. Wurstbauer, G. Gutierrez, D. Delongchamp, C. Jaye, D. Fischer, H. Ogasawara, Lars G. M. Pettersson, D. R. Reichman, P. Kim, M. S. Hyberten, and A. N. Pasupathy, Nano Lett. 12, 4025 (2012).
    86. K. Nakada and A. Ishii, Solid State Communications 151, 13 (2011).
    87. J. Sivek, O. Leenaerts, B. Partoens, and F. M. Peeters, arXiv:1301, 3654.
    88. T. Yildirim, J. Iniguez, and S. Ciraci, Phys. Rev. B 72, 153403 (2005).
    89. S. B. Fagan, A. Fazzio, and R. Mota, Nanotechnology 17, 1154 (2006).
    90. D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea, and A. K. Geim, Nature Physics 7, 701 (2011).
    91. E. H. Hwang, Ben Y. K. Hu, and S. D. Sarma, Phys. Rev. B 76, 115434 (2007).
    92. P. E. Trevisanutto, G. Giorgetti, L. Reining, M. Ladisa, and V. Olevnano, Phys. Rev. Lett 101, 226405 (2008).
    93. K. W. -K Shung, Phys. Rev. B 34, 2 (1986).
    94. C. H. Park, F. Giustino, Marvin L. Cohen, and S. G. Louie, Phys. Rev. Lett. 99, 086804 (2007).
    95. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, N. J. Phys. 8, 318 (2006).
    96. E. H. Hwang and S. D. Sarma, Phys. Rev. B 75, 205418 (2007).
    97. M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, Phys. Rev. B 77, 081411 (2008).
    98. Saeed H. Abedinpour, G. Vignale, A. Principi, Macro Polini, W. -T. Tse, and A. H. MacDonald, Phys. Rev. B 84, 045429 (2011).
    99. A. N. Grigorenko, M. Polini and K. S. Novoselov, Nature Photonics 6, 749 (2012).
    100. R. J. Koch, Th. Seyller and J. A. Schaefer, Phys. Rev. B 82, 201413 (2010).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE