| 研究生: |
黃暐竣 Huang, Wei-Chun |
|---|---|
| 論文名稱: |
利用液相層析質譜儀法比較多樣蛋白與N-羥基琥珀醯亞胺酯和醛連接子之共軛反應 Comparability Study of variable Protein Conjugation with N-Hydroxysuccinimide Ester- and Aldehyde-Linkers by Mass Spectrometry |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 抗體藥物複合體 、還原胺化反應 、離胺酸 、生物共軛物 |
| 外文關鍵詞: | Antibody Drug Conjugation, Reductive amination, Lysine, Bioconjugation |
| 相關次數: | 點閱:157 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物共軛物在選擇性和動力學障礙方面遇到許多挑戰,而這些挑戰很少被描述。我們應用質譜搭配蛋白質體學的技術來顯示在殘基的尺度下的連接子共軛效果,發現在多重接合蛋白共軛物中採用動力學控制的還原胺化(KRA)的聚共軛方法與常見的經由N-羥基琥珀酰亞胺酯(NHS)進行SN2加成共軛方法相比更為優越。在相等的化學計量比下,無論延長的反應時間如何,兩個反應的共軛產率都非常低。因此我們比較過量連接子,在慢動力學條件下(8℃和pH 5.8)以及在席夫鹼形成階段的RA反應速率決定步驟和NHS反應之間進行比較。對於α-乳白蛋白(〜14.2 kDa)和Herceptin IgG(〜150 kDa),RA的結合產率顯示出比NHS反應高2-5倍。鑑定出通過兩個反應實現的共軛位點不同。對於平均每個蛋白所具有共軛連接子(LPR)〜4的多共軛物,RA的共軛位點分佈比NHS反應更均勻。此外,由於水解,NHS反應只能持續1-2小時。相反,RA反應遵循偽一級動力學,α-乳清蛋白和Herceptin IgG速率常數分別為0.06 、0.04 LPR / hr。通過將接頭試劑逐漸添加到硼酸鹽預混的IgG溶液中,進一步控制動力學,以提高共軛產率和位點均一性。在用100x過量連接劑進行4小時滴定的情況下,使用比NHS反應少2-3倍的試劑可得到主要連接在Herceptin IgG的2-3個溶劑暴露的胺位點上的四個連接子。已顯示通過KRA偶聯的Herceptin IgG保留了針對靶向細胞的更高階結構和藥物功效。與其他特定的共軛方法相比,KRA有望以更低的成本實現同質的多共軛。
Bioconjugation encounters many challenges in selectivity and kinetic obstacle which are rarely characterized. Here we applied mass spectrometry and proteomics technique to characterize amine conjugations at residue level and demonstrated a superior poly-conjugation method using kinetically controlled reductive amination (KRA) compared to the most commonly used SN2 reaction by N-hydroxysuccinimide ester (NHS). Under equal stoichiometry, the conjugation yield was extremely low for either reactions regardless of extensive reaction time. The comparability was carried out under excess linker with a slow kinetics condition (8℃and pH 5.8) and between the Schiff base formation-limited RA step and NHS reaction. The conjugation yield of RA was shown to be 2-5 times higher than that of NHS reaction for α-lactalbumin (~14.2 kDa) as well as Herceptin IgG (~150 kDa). The conjugation sites achieved by two reactions were identified to differ. For poly-conjugation with conjugated linker per protein (LPR) ~4, RA achieved a more homogeneous distribution of conjugation sites than those by NHS reaction. Moreover, NHS reaction could only last for 1-2 hours due to hydrolysis. In contrast, RA reaction follows pseudo-first order kinetics with a rate constant determined to be 0.06 and 0.04 LPR/hr for α-lactalbumin and Herceptin IgG, respectively. The kinetics was further manipulated to increase the conjugation yield and site homogeneity through gradual addition of linker reagents to the borate-premixed IgG solution. Under 4-hr titration with 500x excess linkers, four linkers mainly conjugated on the 2-3 solvent-exposed amine sites of Herceptin IgG were achieved using 2-3 times less reagents than NHS reaction. The conjugated Herceptin IgG by KRA was shown to conserve higher order structure and drug efficacy towards targeting cells. Compared to other specific conjugation methods, KRA holds great promises to achieve homogenous poly-conjugations with less cost.
1. Tamura, T.; Hamachi, I., Chemistry for covalent modification of endogenous/native proteins: from test tubes to complex biological systems. Journal of the American Chemical Society 2018, 141 (7), 2782-2799.
2. Nanna, A. R.; Li, X.; Walseng, E.; Pedzisa, L.; Goydel, R. S.; Hymel, D.; Burke Jr, T. R.; Roush, W. R.; Rader, C., Harnessing a catalytic lysine residue for the one-step preparation of homogeneous antibody-drug conjugates. Nature communications 2017, 8 (1), 1-9.
3. Jhan, S.-Y.; Huang, L.-J.; Wang, T.-F.; Chou, H.-H.; Chen, S.-H., Dimethyl labeling coupled with mass spectrometry for topographical characterization of primary amines on monoclonal antibodies. Analytical chemistry 2017, 89 (7), 4255-4263.
4. Chen, X.; Muthoosamy, K.; Pfisterer, A.; Neumann, B.; Weil, T., Site-selective lysine modification of native proteins and peptides via kinetically controlled labeling. Bioconjugate chemistry 2012, 23 (3), 500-508.
5. Gupta, R.; Dey, A.; Vijan, A.; Gartia, B., In Silico Structure Modeling and Characterization of Hypothetical Protein YP_004590319. 1 Present in Enterobacter aerogens. J Proteomics Bioinform 2017, 10, 152-170.
6. Konermann, L.; Ahadi, E.; Rodriguez, A. D.; Vahidi, S., Unraveling the mechanism of electrospray ionization. ACS Publications: 2013.
7. Cech, N. B.; Enke, C. G., Practical implications of some recent studies in electrospray ionization fundamentals. Mass spectrometry reviews 2001, 20 (6), 362-387.
8. Kellie, J. F.; Tran, J. C.; Lee, J. E.; Ahlf, D. R.; Thomas, H. M.; Ntai, I.; Catherman, A. D.; Durbin, K. R.; Zamdborg, L.; Vellaichamy, A., The emerging process of Top Down mass spectrometry for protein analysis: biomarkers, protein-therapeutics, and achieving high throughput. Molecular BioSystems 2010, 6 (9), 1532-1539.
9. Kellie, J. F.; Tran, J. C.; Lee, J. E.; Ahlf, D. R.; Thomas, H. M.; Ntai, I.; Catherman, A. D.; Durbin, K. R.; Zamdborg, L.; Vellaichamy, A.; Thomas, P. M.; Kelleher, N. L., The emerging process of Top Down mass spectrometry for protein analysis: biomarkers, protein-therapeutics, and achieving high throughput. Mol Biosyst 2010, 6 (9), 1532-9.
10. Sievers, E. L.; Senter, P. D., Antibody-drug conjugates in cancer therapy. Annual review of medicine 2013, 64.
11. Wagner-Rousset, E.; Janin-Bussat, M.-C.; Colas, O.; Excoffier, M.; Ayoub, D.; Haeuw, J.-F.; Rilatt, I.; Perez, M.; Corvaïa, N.; Beck, A. In Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion, MAbs, Taylor & Francis: 2014; pp 173-184.
12. Joubert, N.; Beck, A.; Dumontet, C.; Denevault-Sabourin, C., Antibody–Drug Conjugates: The Last Decade. Pharmaceuticals 2020, 13 (9), 245.
13. Johansson, M. P.; Maaheimo, H.; Ekholm, F. S., New insight on the structural features of the cytotoxic auristatins MMAE and MMAF revealed by combined NMR spectroscopy and quantum chemical modelling. Scientific reports 2017, 7 (1), 1-10.
14. LoRusso, P. M.; Weiss, D.; Guardino, E.; Girish, S.; Sliwkowski, M. X., Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2–positive cancer. Clinical Cancer Research 2011, 17 (20), 6437-6447.
15. Abdollahpour-Alitappeh, M.; Lotfinia, M.; Razavi-Vakhshourpour, S.; Jahandideh, S.; Najminejad, H.; Sepehr, K. S.; Moazami, R.; Shams, E.; Habibi-Anbouhi, M.; Abolhassani, M., Evaluation of factors influencing antibody reduction for development of antibody drug conjugates. Iranian biomedical journal 2017, 21 (4), 270.
16. Zimmerman, E. S.; Heibeck, T. H.; Gill, A.; Li, X.; Murray, C. J.; Madlansacay, M. R.; Tran, C.; Uter, N. T.; Yin, G.; Rivers, P. J., Production of site-specific antibody–drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjugate chemistry 2014, 25 (2), 351-361.
17. Cobb, B. A., The history of IgG glycosylation and where we are now. Glycobiology 2020, 30 (4), 202-213.
18. de Haan, N.; Falck, D.; Wuhrer, M., Monitoring of immunoglobulin N-and O-glycosylation in health and disease. Glycobiology 2020, 30 (4), 226-240.
19. Abdollahpour-Alitappeh, M.; Lotfinia, M.; Gharibi, T.; Mardaneh, J.; Farhadihosseinabadi, B.; Larki, P.; Faghfourian, B.; Sepehr, K. S.; Abbaszadeh-Goudarzi, K.; Abbaszadeh-Goudarzi, G.; Johari, B.; Zali, M. R.; Bagheri, N., Antibody-drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. J Cell Physiol 2019, 234 (5), 5628-5642.
20. Köhler, G.; Milstein, C., Continuous cultures of fused cells secreting antibody of predefined specificity. nature 1975, 256 (5517), 495-497.
21. Bostrom, J.; Yu, S.-F.; Kan, D.; Appleton, B. A.; Lee, C. V.; Billeci, K.; Man, W.; Peale, F.; Ross, S.; Wiesmann, C., Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 2009, 323 (5921), 1610-1614.
22. Nejadmoghaddam, M.-R.; Minai-Tehrani, A.; Ghahremanzadeh, R.; Mahmoudi, M.; Dinarvand, R.; Zarnani, A.-H., Antibody-drug conjugates: possibilities and challenges. Avicenna journal of medical biotechnology 2019, 11 (1), 3.
23. Tsuchikama, K.; An, Z., Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein & cell 2018, 9 (1), 33-46.
24. Jain, N.; Smith, S. W.; Ghone, S.; Tomczuk, B., Current ADC Linker Chemistry. Pharm Res 2015, 32 (11), 3526-40.
25. Chau, C. H.; Steeg, P. S.; Figg, W. D., Antibody–drug conjugates for cancer. The Lancet 2019, 394 (10200), 793-804.
26. PO Box, R. Calculate dye:protein (F/P) molar ratios. http://tools.thermofisher.com/content/sfs/brochures/TR0031-Calc-FP-ratios.pdf.
27. Wakankar, A.; Chen, Y.; Gokarn, Y.; Jacobson, F. S., Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs 2011, 3 (2), 161-72.
28. Lo, W. T. Comparability study of protein Conjugation with N-Hydroxysuccinimide- and Aldehyde-Linkers by Mass Spectrometry. National Cheng Kung University, 2019.
29. Koniev, O.; Wagner, A., Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015, 44 (15), 5495-551.
30. Setny, P.; Baron, R.; Kekenes-Huskey, P. M.; McCammon, J. A.; Dzubiella, J., Solvent fluctuations in hydrophobic cavity–ligand binding kinetics. Proceedings of the National Academy of Sciences 2013, 110 (4), 1197-1202.