簡易檢索 / 詳目顯示

研究生: 田鴻儒
Tien, Hung-Ju
論文名稱: 以第一原理計算探討磁性拓樸材料
Magnetic topological materials: A First principle study
指導教授: 張泰榕
Chang, Tay-Rong
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 70
中文關鍵詞: 第一原理計算籠目狀鐵磁體反鐵磁拓樸絕緣體拓樸晶體絕緣體
外文關鍵詞: First-principle calculation, Kagome magnets, Anti-ferromagnetic topological insulator, Topological crystalline insulator
ORCID: https://orcid.org/0000-0002-3789-3928
相關次數: 點閱:101下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文藉由第一原理計算研究籠目狀(Kagome)鐵磁材料RMn6Sn6和反鐵磁拓 樸絕緣體EuSn2P2,實驗上透過掃描穿隧電子顯微鏡發現在TbMn6Sn6中有很強烈 的反常量子霍爾效應證據,透過第一原理計算我們解釋了實驗上觀察到的狄拉克 錐的成因,並詳細解析其軌域組成,更進一步我們討論了此材料在塊材和薄膜下 的拓樸,在塊材下計算結果顯示TbMn6Sn6是一個磁性外爾半金屬,因此在薄膜情 況下很有可能實現反常量子霍爾效應。更進一步我們討論了GdMn6Sn6的角解析 光電子能譜中觀察到的破缺狄拉克錐,可以藉由考慮材料中的能帶開摺重現。此 外,透過磁結構的改變,我們驗證了此材料中Kane-Mele自旋軌道耦合是造成能隙 大小的關鍵。因此,此一系列材料能夠透過參雜來達到材料中貝里曲率的操控, 更進一步改變反常霍爾效應的值。論文的第二部分著重在反鐵磁拓樸絕緣體的預 測,EuSn2P2和傳統拓樸絕緣體Bi2Se3有相同的結構,透過第一原理計算,我們發 現在Γ點有能帶反轉,更驗證此材料的拓樸不變量Z2 = 1,在表面態計算上(001)面 的磷節理面能夠和實驗匹配,解釋了實驗上觀測到的行為,除了反鐵磁拓樸絕緣體 外,EuSn2P2和同類型材料EuSn2As2同時也是一個鏡像對稱保護得拓樸晶體絕緣 體(Topological crystalline insulator),當材料中的Eu層數是偶數時,由於空間反映對 稱被破壞,透過計算,我們預期由量子度規(Quantum Metric)引起的非線性霍爾效 應將大於目前已知材料一個數量級。

    This dissertation investigates the Kagome magnets RMn6Sn6 and the antiferromagnetic topological insulator EuSn2P2 through first-principle calculations. Experimentally, strong evidence of the quantum anomalous Hall effect was found in TbMn6Sn6 using scanning tunneling microscopy. Through first-principle calculation, we elucidated the origin of the Dirac cones observed experimentally and analyzed in detail their orbital composition. Additionally, the topology of this material in both bulk and thin film forms is discussed. In the bulk, the computational results show that TbMn6Sn6 is a magnetic Weyl semimetal, suggesting the potential realization of the quantum anomalous Hall effect in thin films. Additionally, we discussed the broken Dirac cones observed in the Angle-Resolved Photoemission Spectroscopy(ARPES) of GdMn6Sn6, which can be reproduced by considering the band unfolding in the material. Furthermore, alterations in the magnetic structure confirmed that the Kane-Mele spin-orbit coupling is vital for the magnitude of the energy gap in this material. Consequently, this series of materials can manipulate the Berry curvature through doping, thereby enhancing the anomalous Hall effect. The second part of the paper focuses on predicting the antiferromagnetic topological insulator, EuSn2P2, which has the same structure as the conventional topological insulator Bi2Se3. Through first-principle calculations, we found band inversion at the Γ point, verifying the topological invariant Z2 = 1 of this material. In the surface state calculations, the phosphorous termination surface on the (001) plane matched the experiments, explaining the behaviors observed experimentally. Besides being an antiferromagnetic topological insulator, EuSn2P2 and similar compound EuSn2As2 are topological crystalline insulator protected by mirror symmetry. The spatial inversion symmetry breaks when the number of Eu layers in the material is even while the PT symmetry is still preserved. Through calculations, we expect that the nonlinear Hall effect induced by the quantum metric will be an order of magnitude larger than in currently known materials.

    中文摘要 i Abstract ii Acknowledgements iv Contents v List of Tables vii List of Figures viii 1 Introduction 1 2 Kagome Magnets RMn6Sn6 3 2.1 TbMn6Sn6 5 2.1.1 Bulk band structure calculation 5 2.1.2 Bulk topological properties of TbMn6Sn6 8 2.1.3 Comparison with experimental results 9 2.1.4 Computational details 12 2.1.5 Finite size thin film 12 2.2 GdMn6Sn6 16 2.2.1 Bulk band structure calculation 16 2.2.2 Spectral weight and the experimental Results 18 2.2.3 Magnetization and the experimental Results 23 3 Antiferromagnetic topological material EuSn2P2 24 3.1 EuSn2P2 24 3.1.1 Crystal structure and Band structure 24 3.1.2 Topology and Surface states 27 3.1.3 Experimental results 28 3.2 Intrinsic non − linear Hall effect in EuSn2P2 and EuSn2As2 33 3.2.1 Introduction 33 3.2.2 Symmetry constraint of 2nd order Non − linear Hall effect . 35 3.2.3 Computational methods 37 3.2.4 Non − linear Hall effect in EuSn2As2 38 3.2.5 INHE with varied Magnetic orientation 41 3.2.6 The elements replacement 41 3.2.7 Discussion and summary 42 4 Conclusions 45 References 47

    [1] Z. J. Cheng, I. Belopolski, H. J. Tien, T. A. Cochran, X. P. Yang, W. Ma, J. X. Yin, D. Chen, J. Zhang, C. Jozwiak, A. Bostwick, E. Rotenberg, G. Cheng, M. S. Hossain, Q. Zhang, M. Litskevich, Y. X. Jiang, N. Yao, N. B. M. Schroeter, V. N. Strocov, B. Lian, C. Felser, G. Chang, S. Jia, T. R. Chang, and M. Z. Hasan. Visualization of tunable weyl line in a-a stacking kagome magnets. Adv Mater, page e2205927, 2022.
    [2] Wei Zhang, Rui Yu, Hai-Jun Zhang, Xi Dai, and Zhong Fang. First-principles studies of the three-dimensional strong topological insulators bi2te3, bi2se3and sb2te3. New Journal of Physics, 12(6), 2010.
    [3] J. H. Li, Y. Li, S. Q. Du, Z. Wang, B. L. Gu, S. C. Zhang, K. He, W. H. Duan, and Y. Xu. Intrinsic magnetic topological insulators in van der waals layered mnbi te -family materials. Science Advances, 5(6), 2019.
    [4] Gian Marco Pierantozzi, Alessandro De Vita, Chiara Bigi, Xin Gui, Hung-Ju Tien, Debashis Mondal, Federico Mazzola, Jun Fujii, Ivana Vobornik, Giovanni Vinai, Alessandro Sala, Cristina Africh, Tien-Lin Lee, Giorgio Rossi, Tay-Rong Chang, Weiwei Xie, Robert J. Cava, and Giancarlo Panaccione. Evidence of magnetisminduced topological protection in the axion insulator candidate eusn2p2. Proceedings of the National Academy of Sciences, 119(4):e2116575119, 2022.
    [5] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan. Observation of a large-gap topological-insulator class with a single dirac cone on the surface. Nature Physics, 5(6):398–402, 2009.
    [6] Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang, and Shou- Cheng Zhang. Topological insulators in bi2se3, bi2te3 and sb2te3 with a single dirac cone on the surface. Nature Physics, 5(6):438–442, 2009.
    [7] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu. Topological crystalline insulators in the snte material class. Nat Commun, 3:982, 2012.
    [8] M. Kang, L. Ye, S. Fang, J. S. You, A. Levitan, M. Han, J. I. Facio, C. Jozwiak, A. Bostwick, E. Rotenberg, M. K. Chan, R. D. McDonald, D. Graf, K. Kaznatcheev, E. Vescovo, D. C. Bell, E. Kaxiras, J. van den Brink, M. Richter, M. Prasad Ghimire, J. G. Checkelsky, and R. Comin. Dirac fermions and flat bands in the ideal kagome metal fesn. Nat Mater, 19(2):163–169, 2020.
    [9] E. Liu, Y. Sun, N. Kumar, L. Muchler, A. Sun, L. Jiao, S. Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Suss, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein, and C. Felser. Giant anomalous hall effect in a ferromagnetic kagome-lattice semimetal. Nat Phys, 14(11):1125–1131, 2018.
    [10] L. Ye, M. Kang, J. Liu, F. von Cube, C. R. Wicker, T. Suzuki, C. Jozwiak, A. Bostwick, E. Rotenberg, D. C. Bell, L. Fu, R. Comin, and J. G. Checkelsky. Massive dirac fermions in a ferromagnetic kagome metal. Nature, 555(7698):638– 642, 2018.
    [11] Xin Gui, Ivo Pletikosic, Huibo Cao, Hung-Ju Tien, Xitong Xu, Ruidan Zhong, Guangqiang Wang, Tay-Rong Chang, Shuang Jia, Tonica Valla, Weiwei Xie, and Robert J. Cava. A new magnetic topological quantum material candidate by design. ACS Central Science, 5(5):900–910, 2019.
    [12] C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang, and Y. Wang. Robust axion insulator and chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat Mater, 19(5):522–527, 2020.
    [13] Anyuan Gao, Yu-Fei Liu, Chaowei Hu, Jian-Xiang Qiu, Christian Tzschaschel, Barun Ghosh, Sheng-Chin Ho, Damien B´erub´e, Rui Chen, Haipeng Sun, Zhaowei Zhang, Xin-Yue Zhang, Yu-Xuan Wang, Naizhou Wang, Zumeng Huang, Claudia Felser, Amit Agarwal, Thomas Ding, Hung-Ju Tien, Austin Akey, Jules Gardener, Bahadur Singh, Kenji Watanabe, Takashi Taniguchi, Kenneth S. Burch, David C. Bell, Brian B. Zhou, Weibo Gao, Hai-Zhou Lu, Arun Bansil, Hsin Lin, Tay-Rong Chang, Liang Fu, Qiong Ma, Ni Ni, and Su-Yang Xu. Layer hall effect in a 2d topological axion antiferromagnet. Nature, 595(7868):521–525, 2021.
    [14] Nicodemos Varnava and David Vanderbilt. Surfaces of axion insulators. Physical Review B, 98(24), 2018.
    [15] B. Malaman G. Venturini R.Welter J.P. Sanchez P. Vulliet E. Ressouche. Magnetic properties of rmn sn (r:gd.
    [16] B. Chafik El Idrissi G. Venturini and B. Malaman. Magnetic properties of rmn,sn, (r = sc, y, gd-tm, lu) compounds with hffe,ge, type structure. Journal of Magnetism and Magnetic Materials, 94:35–42, 1991.
    [17] D.St.P. Bunbury a P.W. Mitchell a M.A.H. McCausland a Y. Li a R.G. Graham a, *. A 159tb nmr study of tbmn6sn 6 and tbmn6ge 6. Journal of Magnetism and Magnetic Materials, 140-144, 1995.
    [18] Shiang Fang, Linda Ye, Madhav Prasad Ghimire, Mingu Kang, Junwei Liu, Minyong Han, Liang Fu, Manuel Richter, Jeroen van den Brink, Efthimios Kaxiras, Riccardo Comin, and Joseph G. Checkelsky. Ferromagnetic helical nodal line and kane-mele spin-orbit coupling in kagome metal fe3sn2. Physical Review B, 105(3), 2022.
    [19] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig. Type-ii weyl semimetals. Nature, 527(7579):495–8, 2015.
    [20] Jia-Xin Yin, Wenlong Ma, Tyler A. Cochran, Xitong Xu, Songtian S. Zhang, Hung-Ju Tien, Nana Shumiya, Guangming Cheng, Kun Jiang, Biao Lian, Zhida Song, Guoqing Chang, Ilya Belopolski, Daniel Multer, Maksim Litskevich, Zi-Jia Cheng, Xian P. Yang, Bianca Swidler, Huibin Zhou, Hsin Lin, Titus Neupert, Ziqiang Wang, Nan Yao, Tay-Rong Chang, Shuang Jia, and M. Zahid Hasan. Quantum-limit chern topological magnetism in tbmn6sn6. Nature, 583(7817):533– 536, 2020.
    [21] H. L. Skriver and N. M. Rosengaard. Self-consistent green’s-function technique for surfaces and interfaces. Physical Review B, 43(12):9538–9549, 1991. [22] Raffaello Bianco and Raffaele Resta. Mapping topological order in coordinate space. Physical Review B, 84(24), 2011.
    [23] Antimo Marrazzo and Raffaele Resta. Locality of the anomalous hall conductivity. Physical Review B, 95(12), 2017.
    [24] W. Ku, T. Berlijn, and C. C. Lee. Unfolding first-principles band structures. Phys Rev Lett, 104(21):216401, 2010.
    [25] Roger S. K. Mong, Andrew M. Essin, and Joel E. Moore. Antiferromagnetic topological insulators. Physical Review B, 81(24), 2010. [26] E. H. Hall. ¡hall-newactionmagnet-1879.pdf¿. American Journal of Mathematics, 2(3):287–292, 1879. [27] Edwin Herbert Hall. Xviii. on the “rotational coefficient” in nickel and cobalt. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 12(74):157–172, 1881.
    [28] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald, and N. P. Ong. Anomalous hall effect. Reviews of Modern Physics, 82(2):1539–1592, 2010.
    [29] Cong Xiao, Huiying Liu, Jianzhou Zhao, Shengyuan A. Yang, and Qian Niu. Thermoelectric generation of orbital magnetization in metals. Physical Review B, 103(4), 2021.
    [30] Su-Yang Xu, Qiong Ma, Huitao Shen, Valla Fatemi, Sanfeng Wu, Tay-Rong Chang, Guoqing Chang, Andr´es M. Mier Valdivia, Ching-Kit Chan, Quinn D. Gibson, Jiadong Zhou, Zheng Liu, Kenji Watanabe, Takashi Taniguchi, Hsin Lin, Robert J. Cava, Liang Fu, Nuh Gedik, and Pablo Jarillo-Herrero. Electrically switchable berry curvature dipole in the monolayer topological insulator wte2. Nature Physics, 14(9):900–906, 2018.
    [31] Q. Ma, S. Y. Xu, H. Shen, D. MacNeill, V. Fatemi, T. R. Chang, A. M. Mier Valdivia, S.Wu, Z. Du, C. H. Hsu, S. Fang, Q. D. Gibson, K.Watanabe, T. Taniguchi, R. J. Cava, E. Kaxiras, H. Z. Lu, H. Lin, L. Fu, N. Gedik, and P. Jarillo-Herrero. Observation of the nonlinear hall effect under time-reversal-symmetric conditions. Nature, 565(7739):337–342, 2019.
    [32] Inti Sodemann and Liang Fu. Quantum nonlinear hall effect induced by berry curvature dipole in time-reversal invariant materials. Physical Review Letters, 115(21):216806, 2015.
    [33] D. Kumar, C. H. Hsu, R. Sharma, T. R. Chang, P. Yu, J. Wang, G. Eda, G. Liang, and H. Yang. Room-temperature nonlinear hall effect and wireless radiofrequency rectification in weyl semimetal tairte(4). Nat Nanotechnol, 16(4):421–425, 2021.
    [34] Y. Zhang and L. Fu. Terahertz detection based on nonlinear hall effect without magnetic field. Proc Natl Acad Sci U S A, 118(21), 2021.
    [35] Yugo Onishi and Liang Fu. High-efficiency quantum rectification via nonlinear hall effect. arXiv preprint arXiv:2211.17219, 2022. [36] Subhajit Sinha, Pratap Chandra Adak, Atasi Chakraborty, Kamal Das, Koyendrila Debnath, L. D. Varma Sangani, Kenji Watanabe, Takashi Taniguchi, Umesh V. Waghmare, Amit Agarwal, and Mandar M. Deshmukh. Berry curvature dipole senses topological transition in a moir´e superlattice. Nature Physics, 18(7):765–770, 2022.
    [37] Chong Wang, Yang Gao, and Di Xiao. Intrinsic nonlinear hall effect in antiferromagnetic tetragonal cumnas. Physical Review Letters, 127(27):277201, 2021. [38] Huiying Liu, Jianzhou Zhao, Yue-Xin Huang, Weikang Wu, Xian-Lei Sheng, Cong Xiao, and Shengyuan A. Yang. Intrinsic second-order anomalous hall effect and its application in compensated antiferromagnets. Physical Review Letters, 127(27):277202, 2021.
    [39] F. Mazzola, B. Ghosh, J. Fujii, G. Acharya, D. Mondal, G. Rossi, A. Bansil, D. Farias, J. Hu, A. Agarwal, A. Politano, and I. Vobornik. Discovery of a magnetic dirac system with a large intrinsic nonlinear hall effect. Nano Lett, 23(3):902–907, 2023.
    [40] Jizhang Wang, Hui Zeng, Wenhui Duan, and Huaqing Huang. Intrinsic nonlinear hall detection of the n´eel vector for two-dimensional antiferromagnetic spintronics. Physical Review Letters, 131(5), 2023.
    [41] Daniel Kaplan, Tobias Holder, and Binghai Yan. Unification of nonlinear anomalous hall effect and nonreciprocal magnetoresistance in metals by the quantum geometry. arXiv preprint arXiv:2211.17213.
    [42] Yang Gao, Shengyuan A. Yang, and Qian Niu. Field induced positional shift of bloch electrons and its dynamical implications. Physical Review Letters, 112(16):166601, 2014.
    [43] J. P. Provost and G. Vallee. Riemannian structure on manifolds of quantum states. Commun. Math. Phys, 76:289–301, 1980.
    [44] A. Gao, Y. F. Liu, J. X. Qiu, B. Ghosh, V. Trevisan T, Y. Onishi, C. Hu, T. Qian, H. J. Tien, S. W. Chen, M. Huang, D. Berube, H. Li, C. Tzschaschel, T. Dinh, Z. Sun, S. C. Ho, S. W. Lien, B. Singh, K. Watanabe, T. Taniguchi, D. C. Bell, H. Lin, T. R. Chang, C. R. Du, A. Bansil, L. Fu, N. Ni, P. P. Orth, Q. Ma, and S. Y. Xu. Quantum metric nonlinear hall effect in a topological antiferromagnetic heterostructure. Science, 381(6654):181–186, 2023.
    [45] Hang Li, Shun-Ye Gao, Shao-Feng Duan, Yuan-Feng Xu, Ke-Jia Zhu, Shang-Jie Tian, Jia-Cheng Gao, Wen-Hui Fan, Zhi-Cheng Rao, Jie-Rui Huang, Jia-Jun Li, Da-Yu Yan, Zheng-Tai Liu, Wan-Ling Liu, Yao-Bo Huang, Yu-Liang Li, Yi Liu, Guo-Bin Zhang, Peng Zhang, Takeshi Kondo, Shik Shin, He-Chang Lei, You-Guo Shi, Wen-Tao Zhang, Hong-Ming Weng, Tian Qian, and Hong Ding. Dirac surface states in intrinsic magnetic topological insulators eusn2as2 and mnbi2nte3n+1. Physical Review X, 9(4), 2019. [46] J. ˇZelezn´y, P. Wadley, K. Olejn´ık, A. Hoffmann, and H. Ohno. Spin transport and spin torque in antiferromagnetic devices. Nature Physics, 14(3):220–228, 2018.
    [47] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak. Antiferromagnetic spintronics. Reviews of Modern Physics, 90(1):015005, 2018.
    [48] Peter Wadley, Sonka Reimers, Michal J. Grzybowski, Carl Andrews, Mu Wang, Jasbinder S. Chauhan, Bryan L. Gallagher, Richard P. Campion, Kevin W. Edmonds, Sarnjeet S. Dhesi, Francesco Maccherozzi, Vit Novak, Joerg Wunderlich,and Tomas Jungwirth. Current polarity-dependent manipulation of antiferromagnetic domains. Nature Nanotechnology, 13(5):362–365, 2018.
    [49] J. Godinho, H. Reichlov´a, D. Kriegner, V. Nov´ak, K. Olejn´ık, Z. Kaˇspar, Z. ˇSob´aˇn, P. Wadley, R. P. Campion, R. M. Otxoa, P. E. Roy, J. ˇZelezn´y, T. Jungwirth, and J. Wunderlich. Electrically induced and detected n´eel vector reversal in a collinear antiferromagnet. Nature Communications, 9(1):4686, 2018.
    [50] S. Nandy and Inti Sodemann. Symmetry and quantum kinetics of the nonlinear hall effect. Physical Review B, 100(19), 2019.
    [51] J¨urgen Hafner. Ab-initio simulations of materials using vasp: Density-functional theory and beyond. Journal of Computational Chemistry, 29(13):2044–2078, 2008. [52] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 77(18):3865–3868, 1996.
    [53] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen. Density-functional theory and strong interactions: Orbital ordering in mott-hubbard insulators. Physical Review B, 52(8):R5467–R5470, 1995.
    [54] Nicola Marzari and David Vanderbilt. Maximally localized generalized wannier functions for composite energy bands. Physical Review B, 56(20):12847–12865, 1997. [55] Arash A. Mostofi, Jonathan R. Yates, Giovanni Pizzi, Young-Su Lee, Ivo Souza, David Vanderbilt, and Nicola Marzari. An updated version of wannier90: A tool for obtaining maximally-localised wannier functions. Computer Physics Communications, 185(8):2309–2310, 2014.
    [56] Tay-Rong Chang, Su-Yang Xu, Guoqing Chang, Chi-Cheng Lee, Shin-Ming Huang, BaoKai Wang, Guang Bian, Hao Zheng, Daniel S. Sanchez, Ilya Belopolski, Nasser Alidoust, Madhab Neupane, Arun Bansil, Horng-Tay Jeng, Hsin Lin, and M. Zahid Hasan. Prediction of an arc-tunable weyl fermion metallic state in moxw1xte2. Nature Communications, 7(1):10639, 2016.
    [57] P. Bhalla, K. Das, D. Culcer, and A. Agarwal. Resonant second-harmonic generation as a probe of quantum geometry. Phys Rev Lett, 129(22):227401, 2022. [58] Hanqi Pi, Shuai Zhang, and Hongming Weng. Magnetic bulk photovoltaic effect as a probe of magnetic structures of EuSn2As2. Quantum Frontiers, 2(1), 2023.
    [59] Junyeong Ahn, Guang-Yu Guo, and Naoto Nagaosa. Low-frequency divergence and quantum geometry of the bulk photovoltaic effect in topological semimetals. Physical Review X, 10(4), 2020.
    [60] Junyeong Ahn, Guang-Yu Guo, Naoto Nagaosa, and Ashvin Vishwanath. Riemannian geometry of resonant optical responses. Nature Physics, 18(3):290–295, 2021.
    [61] Tobias Holder, Daniel Kaplan, and Binghai Yan. Consequences of time-reversalsymmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion. Physical Review Research, 2(3), 2020.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE