| 研究生: |
陳烐培 Chen, Chou-Pei |
|---|---|
| 論文名稱: |
在不同氧化條件下以真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究 Morphology and Electrical Properties of Gas Sensitive Ga2O3 Nanowires Film Prepared Under Different Oxidation Atmosphere by Rtheotaxial Growth and Thermal Oxidation |
| 指導教授: |
陳進成
Chen, Chin-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 薄膜 、奈米線 、氧化鎵 、氣體感測器 、熱氧化法 、真空蒸鍍 |
| 外文關鍵詞: | gallium oxide, gas sensor, vacuum evaporation, thin film, rtheotaxial growth and thermal oxidation(RGTO), nanowires |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技日新月異,近年來應用半導體薄膜於氣體感測非常廣泛,其中氧化鎵在高溫下穩定且具有N型半導體特性,更常被應用於感測還原性氣體。因此本研究利用真空蒸鍍熱氧化法製備氧化鎵薄膜氣體感測器,並探討不同氧化時間、不同膜厚下之半導體特性。進一步針對此變因探討氧化鎵薄膜之奈米線的成長,以及對氣體感測的影響。
實驗結果顯示,鎵薄膜在高溫下長時間氧化會使表面晶粒大小有變小的趨勢且大小逐漸均勻。當氧化時間增加時,Ga2O3的半導體特性會由N型半導體特性轉變為P型半導體特性。
1.0μm鎵的氧化鎵薄膜有一最佳感測溫度為575℃,且氧化氣氛在流通酒精蒸氣下氧化時奈米線成長最多且最長。0.2μm鎵薄膜沒有奈米線的產生,與實驗室之前的研究結果相符;2.0μm鎵薄膜因使用較低的蒸鍍速率而使得蒸鍍時間較長,造成薄膜較緻密且產生較高的結晶度,以致於無法產生奈米線。
氧化鎵薄膜在不同膜厚(0.2μm、1.0μm和2.0μm)及不同感測溫度(550℃、575℃和600℃)下進行感測,靈敏度皆隨感測氣體濃度增加而增加。
In recent years thin film semiconductor is extensively used as gas sensor to detect poison gas. And Ga2O3 possesses an N-type semiconductor characteristic, is stable at high temperature and being most often applied in detecting reducing gas. In the current study, Ga2O3 semiconductor thin film was prepared by rtheotaxial growth and thermal oxidation (RGTO) method on SiO2. The morphology and the electrical properties of Ga2O3 films were measured as functions of the thickness of Ga deposited on SiO2 and oxidation time. Their effects on the growth of nanowires of the Ga2O3 were examined.
The experimental results show that Ga2O3 grain size decreases as the oxidation time increases at high temperature, and the film morphology became uniform. When the oxidation time increases, the semiconductor characteristic of the Ga2O3 changes from N-type to P-type.
The sensitivity of the Ga2O3 films in response to ethanol were found to have an optimum sensing temperature at 575℃. Long nanowires are produced, however highest density of nanowires is observed if the oxidation is carried out under the ethanol vapor flow. When the thickness of Ga2O3 is below 0.3μm, no nanowires will be produced, and the same result was observed in this study.
Theoretically, an increase of concentration of reactant vapor must lead to more shifting of the resistance, and the identical experiment result agree with the theoretical prediction.
1. P. T. Walsh, “Toxic gas sensors for occupational health and safety”, Transducer Technology, pp. 10 (Feb. 1990).
2. 蔡嬪嬪、曾明漢,“氣體感測器之簡介、應用及市場”,材料與社會, 第68期,pp. 50-56 (1992).
3. C. D. Chriswell and J. J. Richard, “Use of electrolytically generated hydrogen as a purge gas for the isolation of volatile organic compounds from groundwater”, Separation Science and Technology, Vol. 28, No. 15-16, pp. 2377-2386 (Nov. 1993).
4. U. R. Bernier and R. A. Yost, “Vacuum operation of the flameioniza-tion detector for gas chromatography”, Journal of Chromatographic Science, Vol. 31, No. 9, pp. 358-362 (Sep. 1993).
5. G. Morel, “Method development and quality assurance for the analysis of hydrocarbons in environmental samples”, International Journal of Environmental Analytical Chemistry, Vol. 63, No. 4, pp. 269-288 (1996).
6. G. Heiland, “Homogeneous semiconducting gas sensors”, Sensors and Actuators, Vol. 2, pp. 343-361 (1982).
7. N. Yamazoe, Y. Kurokawa and T. Seiyama, “Effects of additives on semiconductor gas sensors”, Sensors and Actuators, Vol. 4, pp. 283-289 (1983).
8. P. T. Moseley, “New trends and future prospects of thick- and thin-film gas sensors”, Sensors and Actuators B, Vol. 3, pp. 167-174 (1991).
9. V. S. Grinevich and V. A. Smyntyna, “Electronic mechanism for absorptive sensitivity in semiconductor gas sensors”, Sensors and Actuators B, Vol. 18-19, pp. 426-428 (1994).
10. N. Yamazoe and N. Miura, “Environmental gas sensing”, Sensors and Actuators B, Vol. 20, pp. 95-102 (1994).
11. V. Vorotyntsev, N. Maksimovich, L. Yeremina, O. Kaskevich and N. Nikitina, “Adsorption semiconductor gas sensors and heterogeneous catalytic reaction mechanisms”, Sensors and Actuators B, Vol. 35-36, pp. 333-337 (1996).
12. B. M. Kulwicki, “Ceramic sensors and transducers”, The Journal of Physics and Chemistry of Solids, Vol. 45, No. 10, pp. 1015-1031 (1984).
13. 鄭煜騰、鄭耀宗,“氣體感測器的市場分析與發展概況”,科儀新知,第十八卷五期,pp. 76-84 (1997).
14. 葉陶淵,化學感測器中氣體感測器的新動向,科儀新知第20卷4
期75頁(1999)
15. 李俊遠,氣體感測器介紹,工業材料第124期第82頁,(1997)
16. 張希誠,感測器的基礎與應用:工廠與機械人篇,第49-51頁(1986)
17. 楊尚仁,共蒸鍍法製備鋅、銦氧化薄膜與摻鈀薄膜氣體感測器之研究,2003
18. 邱碧秀,氣體感測器:半導體型氣體感測器,科儀新知 第6卷第6期 第67-71頁(1985)
19. 蔡嬪嬪,氣體感測器的新動向,工業材料150期98頁(1999)
20. N.Taguchi. Japn.Pat.45-38200(1962)
21. 朱俊彥,攜帶式氣體分析儀與偵測器市場新趨勢,環保產業雙月刊第12期(2002).
22. P.B.Weisz, Effects of electronic charge transfer between adsorbate and solid on chemsiorption and catalysis , J.Chem.Phys Vol.21 pp.1531 ~ 1538 (1953).
23. T.Seiyama,A.Kato,K.Fajiishi,M.Nagatahi,A new detector for gaseous components using semiconductive thin films, Analystical chemistry 34 pp.1502 (1962).
24. P.J.Shaver,Activated tungsten oxide gas detectors,Appl. Phys. Lett.,11 pp.255~257(1967).
25. 陳寶清,真空表面處理工學,表面工業雜誌第31期(1992)
26. Zeleny,Z. Proc.Camb.Phil.Soc.18,71(1915)
27. S.Kudo,H.Ohnishi,T.Matsumoto and M.Ippomatsu,NOx sensing using YBa2Cu3O7 thin film ,Sensor and actuators B,23 219-222(1995) .
28. T. takada, Ozone detection by In2O3 thin film gas sensor ,in T.Seiyama(ed.),ChemicalSensorTechnology,Vol.2,Elsevier,Amsterdam/Kodansha,Tokyo, pp.59-70 (1989).
29. T.Arakawa,K. Takada, Y. Tsunemine and J. Shiokawa , Characteristics of CO detecting on the reduce perovskite oxide LaCoO3 Proc. 2 nd Int. Meet.Chemical Sensors,Bordeaux,France, July 7-10, pp115-118 1986 .
30. J.R. Steter, A surface chemical view of gas detection, J. Colloid Interface Sci., 65 pp 432-443 (1978) .
31. N.Hykaway, W.M. Sears, R.F. Frindt and S.R. Morrison, The gas sensing properties of bismuth molybdate evaporate films, Sensors and Actuators, 15 pp 105 (1988) .
32. P.T. Mosely and D.E.Williams,A selective ammonia sensor, Sensors and Actuators, B1 pp 113-115 (1990)
33. H. Nanto, T.Minami and S. Takata, Zinc oxide thin film ammonia gas sensors with high sensitivity and excel selectivity, J. Appl. Phys.,60 482 (1986).
34. G.Sbervegileri, S.Groppelli and G. Coccoli, Radio frequence magnetron sputtering growth and characterization of indium-tin oxide (ITO) thin film for NO2 gas sensor, Sensors and Actuators, 15 pp 235(1988).
35. G.Sbervegileri, P.Benussi, G. Coccoli, S. Groppelli and P.Nill, reactivity sputtered indium tin oxide polycrystalline thin film as NO and NO2 gas sensor, Thin Solid Films, 186 pp 349 (1990) .
36. G.Sberveglieri, C. PEREGO, F. Parmigian, and G.Quattroni, Sn1-xFexOy: a new material for carbon monoxide detection, Tech. Digest, 7 th Int. Conf. Solid-State Sensors and Actuators, Yokohama , Japan, ,pp.972-976 ,June 7-10, 1993
37. P. Bonzi, L.E.Depero, F. Parmigiani, C. Perego, G. Sberveglieri and G.Quattroni, Formation and structure of tin iron oxide thin film CO gas sensor, J. Mater. Res.,submitted for publication.
38. Suzuki, K. Zakrzewska and M. Rekas, Thin oxide film as gas sensor, Thin Solid Films, 174 pp 269-275(1989) .
39. G. Sberveglieri, Recent developments in semiconductor thin-film gas sensors, Sensors and Actuators B 23 pp103-109(1995).
40. Xing-Hui Wu, Yu-De Wang, Zi-Hua Tian, Huan-Lin Liu, Zhen-Lai Zhou, Yan-Feng Li, Study on ZnSnO3 sensitivity material based on combustible gases, Solid-State Electronics 46 pp 715-719 (2002).
41. James A.Dirksen , Kristin Duval , Terry A. Ring , NiO thin-film formaldehyde gas sensor , Sensors and Actuators B 80 pp 106-115(2001).
42. R.B. Vasiliev, M.N. Rumyantseva , S.E. Podguzova, A.S. Ryzhikov, L.I. Ryabova, A.M. Gaskov , Effect of interdiffusion on electrical and gas sensor properties of CuO/SnO2 heterostructure, Materials Science and Engineering B57 pp241- 246 (1999) .
43. J. Gerblinger, W. Lohwasser, U. Lampe, H. Meixner,High temperature oxgen sensor based on sputtered cerium oxide, Sensors and Actuators B 26-27 pp93 – 96(1995)
44. Youngxiang Li , Wojtek WLODARSKI , Kosmas Galatsis, Sayed Hassib Moslih, Jared Cole , Salvy Russo , Natasha Rockelmann , Gas sensing properties of p-type semiconducting Cr-doped TiO2 thin film , Sensors and Actuators B 83 pp 160 –163 (2002).
45. W. Gopel, “Chemical sensor technologies: Empirical art and system- atic research” in Sensors: A Comprehensive Survey, Volume 2, ed. W. Gopel, J. Hesse and J. N. Zemel, New York: VCH, pp. 61(1991)
46. C. Xu, J. Tamaki, N. Miura and N. Yamazoe, “Correlation between gas sensitivity and crystallite size in porous SnO2-based sensors”, Chemistry Letters, pp. 441-444(1990)
47. D. J. Yoo, J. Tamaki, S. J. Park, N. Miura and N. Yamazoe, “Effects of thickness and calcinations temperature on tin dioxide sol-derived thin-film sensor”, Journal of the Electrochemical Society, Vol. 142, No. 7, pp. L105-L107(July 1995)
48. M. Fleischer, W. Hanrieder and H. Meixner, “Stability of semiconducting gallium oxide thin films”, Thin Solid Film, Vol. 190, pp.93-102(1990)
49. S. R. Morrison, “Chemical sensors” in Semiconductor Sensors, ed. S. M. Sze, New York: John Wiley & Sons, Inc., pp.383(1994)
50. T. Harwig, G. J. Wubs and G. J. Dirksen, “Electrical properties of β-Ga2O3 single Crystals”, Solid State Communications, Vol. 18, pp. 1223-1225(1976)
51. R. Roy, V. G. Hill and E. F. Osborn, “Polymorphism of Ga2O3 and the system Ga2O3-H2O”, Journal of the American Ceramic Society, Vol. 74, pp. 719-722(1952)
52. S. Geller, “Crystal structure of β-Ga2O3”, The Journal of Chemical
Physics, Vol.33, No.3, pp. 676-684(1960)
53. M. Fleischer and H. Meixner, “Sensing reducing gases at high tem- peratures using long-term stable Ga2O3 thin films”, Sensors and Actuators B, Vol. 6, pp. 257-261(1992)
54. 賴耿陽,真空蒸鍍應用技術,復漢出版社(1991)
55. K. Reichelt and X. Jiang, “The preparation of thin films by physical vapor deposition methods ”, Thin Solid Films, Vol. 191, pp. 91-126 (1990).
56. J. A. Venables, G. D. T. Spiller and M. Hanbucken, “Nucleation and Growth of thin film”, Reports on Progress in Physics, Vol. 47, pp. 399-459(1984)
57. J. A. Venables, G. L. Price, “Nucleation of thin films” in Epitaxial Growth, ed. J. W. Matthews, New York:Academic Press, pp.381 (1975)
58. V. E. Bauer, “Phanomenologische theorie der kristallabscheidung an oberflachen. I”, Zeitschrift fur Kristallographie, Bd. 110, pp. 327-394(1958)
59. G. Sberveglieri, G. Faglia, S. Groppelli, P. Nelli and A. Camanzi, “A new technique for growing large surface area SnO2 thin film (RGTO technique)”, Semiconductor Science and Technology, Vol. 5, pp. 1231-1233(1990)
60. E. H. Sondheimer, “The mean free path of electrons in metals”, Advances in Physics, Vol. 1, pp. 1-42(1952)
61. R. W. Berry, P. M. Hall and M. T. Harris, “Electrical conduction in metals” in Thin Film Technology, New York: Van Nostrand, pp. 289(1968)
62. 林鴻明、曾世杰,奈米半導體材料之特殊氣體感測性質,工業材料第157期 pp. 163-169, (2000)
63. S. R. Morrison, The Chemical Physics of Surfaces 2nd, New York: Plenum Press pp. 251(1990)
64. D. Kohl, Surface processes in the detection of reducing gases with SnO2-based devices, Sensors and Actuators Vol. 18 pp. 71-113(1989)
65. H. Windischmann and P. Mark, A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor, Journal of the electrochemical society Vol. 126, No. 4, pp. 627-633(1979)
66. N. Yamazoe, J. Fuchigami, M. Kishikawa and T. Seiyama, Interactions of tin oxide surface with O2, H2O and H2, Surface Science Vol. 86, pp. 335-344(1979)
67. Yasuhiro Schimizu and Makoto Egashira, MRS Bulletin, 24(6), June, (1998) 18
68. H. Ogawan, M. Nishikawa, and A. Abe, J. Appl. Phys. 53(1982) 4448
69. J. F. Mcaleer, P. T. Moseley, J. O. W. Norris and D. E. Williams, Tin dioxide gas sensors, Journal of the Chenical Society. Faraday Transactions, Vol. 83, pp. 1323-1346(1987)
70. S. C. Chang, “Thin-film semiconductor NOx sensor”, IEEE Transactions on Electron Devics, Vol. ED-26, No. 12, pp. 1875-1880 (December 1979)
71. L. N. Cojocaru and I. D. Alecu, “Electrical properties of β-Ga2O3”, Zeitschrift fur Physikalische Chemie Neue Folge, Bd. 84, pp. 325-331 (1973)
72. D. Gourier, L. Binet and E. Aubay, “Magnetic bistability and memory of conduction electrons released from oxygen vacancies in gallium oxide ”, Radiation Effects and Defects in Solids, Vol. 134, pp. 223-228(1995)
73. J. A. Kohn, G. Katz and J. D. Broder, “Characterization of β-Ga2O3 and its alumina isomorph, θ-Al2O3 ”, The American Mineralogist, Vol. 42, pp. 398-407(1957)
74. P. Kofstad, “Defect reactions” in Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, New York: Wiley- Interscience, pp. 15(1972)
75. F. A. Kroger, “Detailed description of crystalline solids; imperfecttions” in The Chemistry of Imperfect Crystals, Volume 2, New York: North-Holland Pub. Co.; American Elsevier, pp. 1 (1974)
76. J. Geurts, S. Rau, W. Richter and F. J. Schmitte, “SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies”, Thin Solid Films, Vol. 121, pp. 217-225(1984)
77. Stephanie A. Hooker, Nanotechnology Advantages Applied to Gas Sensor Development, Business Development Manager Nanomaterials Research, Business Communications Co., Inc., Norwalk, CT USA
78. Chin-Cheng Chen and Chiu-Chen Chen, “Morphology and electrical properties of pure and Ti-doped gas-sensitive Ga2O3 film prepared by rheotaxial growth and thermal oxidation”, J. Mater. Res., Vol. 19, No. 4, pp. 1105-1117(Apr 2004)
79. 陳憶萍,真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究,2004
80. R. Brown, “Thin film substrates” in Handbook of Thin Film Technology, ed. L. I. Maissel and R. Glang, New York: McGraw-Hill, pp. 6-37(1970)
81. C. J. Smithells, “Vapour pressures” in Metals Reference Book, London & Boston: Butterworths, pp. 231(1976)
82. R. D. Doherty, “Dendritic growth” in Crystal Growth, ed. Brian R. Pamplin, New York: Pergamon, pp. 485(1980)
83. W. Hellmich, C. B. Braunmuhl, G. Muller, G. Sberveglieri, M. Berti and C. Perego, “The kinetics of formation of gas-sensitive RGTO-SnO2 films”, Thin Solid Films, Vol. 263, pp. 231-237(1995)
84. R. D. Doherty, “Dendritic growth” in Crystal Growth, ed. Brian R. Pamplin, New York: Pergamon, pp. 485(1980)
85. Andrew P. Lee, Temperature modulation in semiconductor gas sensing, Sensors and Actuators B, Vol.60, pp. 35-42(1999)
86. P. T. Moseley, Materials selection for semiconductor gas sensors, Sensors and Actuators B, Vol.6, pp. 149-156(1992)
87. IRA N. Levine, Physical chemistry 4th edition, MsGraw-Hill, New York, pp.443(1995)
88. R Bene, Application of quadrupole mass spectromter for the analysis of near-surface gas composition during DC sensor-tests, Vacuum Vol. 50, number3-4, pp. 331-337(1998)
89. D. Kohl, Adsorption and decomposition of methane on gallium oxide films, Sensors and Actuators B, Vol.59, pp. 140-145(1999)
90. G. Gaggiotti, Temperature dependencies of sensitivity and surface chemical composition of SnO gas sensors, Sensors and Actuators B, Vol.24-25, pp. 516-519(1995)
91. J. Mizsei, How can sensitive and selective semiconductor gas sensord be made, Sensors and Actuators B, Vol.23, pp. 173-176(1995)
92. S. R. Morrison, “Adsorption and desorption” in The Chemical Physics of Surfaces, New York: Plenum Press, pp. 251(1990)