簡易檢索 / 詳目顯示

研究生: 陳亮穎
Chen, Liang-Yin
論文名稱: 應用資訊理論於建構考量變動管制界限之不良率管制圖
An Information-theoretical Control Chart Based on Time-Varying Control Limits for Monitoring Fraction Nonconforming
指導教授: 張裕清
Chang, Yu-Ching
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 71
中文關鍵詞: 不合格率管制圖資訊理論變動管制界限GLR管制圖
外文關鍵詞: p chart, information theory, generalized likelihood ratio control chart., Time-Varying control limits
相關次數: 點閱:116下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 管制圖為常見的品質管理工具,現有的單變量管制圖其實已經發展的很完善,常見的單變量管制圖有:傳統的修華特管制圖、累積和管制圖、指數加權移動平均管制圖,但這些單變量管制圖大部分都只在特定位移才有較好的監控效果。GLR管制圖是近年來較受到學者重視的管制圖,此管制圖在廣泛的位移都有良好的監控表現,先前學者提出之GLR管制圖以及資訊理論管制圖在監控不良率時都是使用固定管制界限,本研究則是應用資訊理論的概念建構監控不合格率上升之管制圖,稱之為Information-theoretical Control Chart for fraction nonconforming (ITCC),其使用符合實際情況之變動管制界限,在一開始給予較寬的管制界限範圍並隨考慮的樣本數的增加使管制界限逐漸變窄,而本研究使用兩種估計檢定統計量的方式,分別為ITCC-L與ITCC-I,ITCC-L是與GLR管制圖的概念結合,先利用最大概似法找到最有可能發生樣本的位置再進行檢定統計量的計算,另一種ITCC-I是假設製程在k-1期時皆未提出警訊,之後從k期依序往前考慮樣本個數計算檢定統計量。根據最後分析結果可看出ITCC-I較ITCC-L有更好的監控效果,並在p=0.01時在廣泛位移有最好的監控能力,在p=0.1時,大位移有較佳監控能力,在p=0.001時,小位移有較佳的監控能力且其中使用本研究提出之判斷準則方法來避免無法進行計算的設定下對廣泛位移都有良好的監控效果,且不需要額外設定任何參數,較符合實際監控製程之情況。

    This study develops a statistical process control (SPC) chart with time-varying control limits based on information theory to monitor the increase in the nonconforming rate, p. We name this control chart as Information-theoretical Control Chart for fraction nonconforming (ITCC). This study uses two ways to construct the ITCC, the maximum-likelihood method and the backward sequential test, respectively. This two approaches are named as ITCC-L chart and ITCC-I chart. The Phase II performance of the charts in detecting small increases in p is evaluated by the steady state average number of observations to signal. Comparison of the ITTC to the Bernoulli GLR chart and the Shewhart CCC-r chart show that the performance of the ITCC-I chart is better than its competitors. ITCC do not require additional parameters, and can be an effective method in detecting wide range shift.

    摘要 II 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 2 第三節 研究目的 3 第四節 模型假設 4 第五節 研究流程 4 第二章 文獻探討 6 第一節 管制圖介紹 6 第二節 離散型管制圖 10 第三節 資訊理論 15 第四節 Change point model 16 第五節 GLR管制圖 17 第六節 管制圖監控能力績效指標 18 第七節 小結 20 第三章 管制圖建構與步驟 21 第一節 研究假設與符號設定 22 第二節 研究流程建構 23 第三節 管制圖建構與計算方式 27 第四節 管制圖繪製 30 第五節 小結 31 第四章 結果分析 32 第一節 管制圖之例外處理 32 第二節 管制圖比較結果與分析 33 第三節 管制圖其他相關圖表 39 第四節 小結 45 第五章 結論與未來研究方向 46 第一節 研究結論 46 第二節 未來研究方向 47 參考文獻 49 附錄I 54 附錄II 55 附錄III 56 附錄IV 57 附錄V 58 附錄VI 59 附錄VII 60 附錄VIII 61 附錄IX 62 附錄X 63 附錄XI 64 附錄XII 65 附錄XIII 66 附錄XIV 67 附錄XV 68 附錄XVI 70

    中文文獻:
    劉英守,應用資訊理論於監控伯努力過程之管制圖,國立成功大學工業與資訊管理研究所碩士論文,民國一百零四年六月。
    楊瑋欣,應用幾何分佈於監控伯努力過程之資訊理論管制圖,國立成功大學工業與資訊管理研究所碩士論文,民國一百零五年六月。
    英文文獻:
    Akaike, H. (1974). A new look at the statistical model identification. Automatic Control, IEEE Transactions on, 19(6), 716-723.
    Alwan, L. C., Ebrahimi, N., & Soofi, E. S. (1998). Information theoretic framework for process control. European Journal of Operational Research, 111(3), 526-542.
    Burnham, K. P. & Anderson, D. R. (2001). Kullback-Leibler information as a basis for strong inference in ecological studies. Wildlife Research, 28(2), 111-119.
    Chang, T., & Gan, F. (2001). Cumulative sum charts for high yield processes. Statistica Sinica, 11(3), 791-806.
    Crowder, S. V. (1989). Design of exponentially weighted moving average schemes. Journal of Quality Technology, 21(3), 155-162.
    Do, M. N. & Vetterli, M. (2000). Texture similarity measurement using Kullback-Leibler distance on wavelet subbands. In Image Processing, 2000 Proceedings. 2000 International Conference on (Vol. 3, pp. 730-733). IEEE.
    Gan, F. F. (1990). Monitoring Poisson observations using modified exponentially weighted moving average control charts. Communications in Statistics-Simulation and Computation, 19(1), 103-124.
    Gan, F. (1993). An optimal design of CUSUM control charts for binomial counts. Journal of Applied Statistics, 20(4), 445-460.
    Goh, T. N. (1987). A control chart for very high yield processes. Quality Assurance, 13(1), 18-22.
    Gokhale, D., & Kullback, S. (1978). The information in contingency tables. New York: Marcel Dekker.
    Harris, B. (1975). The statistical estimation of entropy in the non-parametric case (No. MRC-TSR-1605). Wisconsin Univ-Madison Mathematics Research Center.
    Hawkins, D. M., & Olwell, D. H. (1998). Cumulative sum charts and charting for quality improvement , Springer Verlag : New York.
    Hawkins, D. M., Qiu, P. & Kang, C. W. (2003). The changepoint model for statisticalprocess control. Journal of Quality Technology, 35(4), 355-366.
    Huang, W., Wang, S.& Reynolds, M. R. (2013). A generalized likelihood ratio chart for monitoring Bernoulli processes. Quality and Reliability Engineering International, 29(5), 665-679.
    Hunter, J. S. (1986). The exponentially weighted moving average. Journal of Quality Technology.,18(4), 203-210.
    Kanagawa, A., Arizono, I., & Ohta, H. (1997). Design of the ( overline x, s) Control Chart Based on Kullback-Leibler Information. In Frontiers in Statistical Quality Control (pp. 183-192). Physica-Verlag HD.
    Kullback, S. & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 79-86.
    Montgomery, D. C. (2009). Statistical Quality Control, A Modern Introduction, John Whiley & Sons. New York.
    Montgomery, D. C. (2001). Introduction to Statistical Process Control. John Wily& Sons, New York, NY.
    Page, E. S. (1954). Continuous inspection schemes. Biometrika, 100-115.
    Pan, W. (2001). Akaike's information criterion in generalized estimating equations. Biometrics, 57(1), 120-125.
    Reynolds Jr, M. R. & Stoumbos, Z. G. (1999). A CUSUM chart for monitoring a proportion when inspecting continuously. Journal of Quality Technology, 31(1), 87.
    Reynolds Jr, M. R., & Lou, J. (2010). An evaluation of a GLR control chart for monitoring the process mean. Journal of Quality Technology, 42(3), 287.
    Reynolds Jr, M. R., Lou, J., Lee, J., & Wang, S. (2013). The design of GLR control charts for monitoring the process mean and variance. Journal of Quality Technology, 45(1), 34.
    Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), 239-250.
    Roberts, S. W. (1966). A comparison of some control chart procedures. Technometrics, 8(3), 411-430.
    Ryan, T. P. & Schwertman, N. C. (1997). Optimal limits for attributes control charts. Journal of Quality Technology, 29(1), 86.
    Shewhart, W. A. (1931). Economic control of quality of manufactured product. ASQ Quality Press.
    Samuel, T. R., Pignatiello Jr, J. J., & Calvin, J. A. (1998). Identifying the time of a step change with X control charts. Quality Engineering, 10(3), 521-527.
    Shannon, C. E. (1951). Prediction and entropy of printed English. Bell System Technical Journal, 30(1), 50-64.
    Szarka, J. L. & Woodall, W. H. (2011). A review and perspective on surveillance of Bernoulli processes. Quality and Reliability Engineering International, 27(6), 735-752.
    Tagaras, G. (1998). A survey of recent developments in the design of adaptive control charts. Journal of Quality Technology, 30(3), 212.
    Takemoto, Y., & Arizono, I. (2005). A study of multivariate ( bar {X}, S) control chart based on Kullback–Leibler information. The International Journal of Advanced Manufacturing Technology, 25(11-12), 1205-1210.
    Wang, S., & Reynolds Jr, M. R. (2013). A GLR control chart for monitoring the mean vector of a multivariate normal process. Journal of Quality Technology, 45(1), 18.
    Watakabe, K., & Arizono, I. (1999). The power of the (x̄, s) control chart based on the log‐likelihood ratio statistic. Naval Research Logistics, 46(8), 928-951.
    Woodall, W. H. (1997). Control charts based on attribute data: bibliography and review. Journal of Quality Technology, 29(2), 172.
    Yeh, A. B., Mcgrath, R. N., Sembower, M. A., & Shen, Q. (2008). EWMA control charts for monitoring high-yield processes based on non-transformed observations. International Journal of Production Research, 46(20), 5679-5699.
    Zamba, K. D. & Hawkins, D. M. (2005). Statistical Process Control for Shifts in Mean or Variance Using a Changepoint Formulation. Technometrics, (2), 164-173.

    下載圖示 校內:2022-06-19公開
    校外:2022-06-19公開
    QR CODE