| 研究生: |
張祐豪 Chang, Yu-Hao |
|---|---|
| 論文名稱: |
低成本染料敏式太陽能電池之二氧化鈦光電極研究 TiO2-based Photoanodes for Low-cost Dye-sensitized Solar Cells |
| 指導教授: |
王鴻博
Wang, Hong-Paul |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 二氧化鈦 、染料敏式太陽能電池 、EXAFS 、TiCl4 、XANES |
| 外文關鍵詞: | EXAFS, XANES, nanosize TiO2, Dye sensitized solar cell |
| 相關次數: | 點閱:66 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著石化能源劇烈的被消耗,尋找綠色再生能源已成為刻不容緩的重要課題。文獻指出,太陽輻射能到達地面之能量高達400 MW/sec,若能有效利用其0.1%之能量,並以轉換效率(太陽能轉換為電能)10%計算,此發電量足以提供能源需求,因此,太陽能發電具高應用潛力,其中又以製程簡單之敏式染料太陽能電池(dye sensitized solar cells, DSSCs)為主要研究方向。在追求高效率的同時,低成本也成為DSSCs具有高度普及化及商業化之必要條件,因此,本研究之主要目的包括:(1)利用相對便宜之鈦鹽類(TiCl4)取代鈦醇類(Ti(OCH(CH3)2)4)以合成二氧化鈦(TiO2)奈米顆粒;(2)利用TiCl4資源化腐質酸混凝污泥以合成奈米級TiO2;(3)搭配簡單、低成本製程(spin coater)製備TiO2光電極;(4)研究TiO2光電極微結構(microstructure)對於效率之影響;及(5)分析氧化鋅奈米柱電極之精細結構。
實驗結果顯示,TiCl4合成之TiO2具有高純度銳鈦礦結構,有助於光電極之電子傳導,並藉由短路電流的提升,增進光電轉化效率。TiCl4對於腐質酸之混凝效果略優於FeCl3,污泥經過高溫熱處理(723 K)可燒結出奈米級TiO2,其製備之光電極具有5.12 %之光電轉換效率。光電極微結構改變之研究顯示,增加電極結構之粗糙度有助於提升染料吸附量,產生之孔道(channel)使入射太陽光易抵達電極深處,幫助深層染料激發,提高短路電流。即時X射線吸收近邊緣結構(X-ray absorption near edge structure (XANES))光譜顯示ZnO晶種層薄膜中,鋅之主要物種為奈米級ZnO(100%),經過水熱法成長ZnO奈米柱薄膜,鋅之主要物種為奈米級ZnO(88%)及Zn(OH)2(12%)。ZnO奈米柱薄膜吸附N3及mercurochrome染料後,發現奈米級ZnO分別減少至83及80%。X射線吸收光譜之延伸微細結構(Extended X-ray absorption fine structural (EXAFS))光譜顯示,ZnO晶種層薄膜之Zn-O鍵距為1.96 ,經過水熱法成長ZnO奈米柱薄膜,其鍵距微幅減少至1.95 。吸附N3及mercurochrome染料之ZnO奈米住薄膜,配位數分別由5.20降至4.55及4.75。
The fossil fuels have been tremendously consumed. In seeking of alternative energy which can be renewable is becoming an important issue. Solar energy is one of the best choice of available technologies which providing renewable energy. About 0.1% of the earth surface solar energy utilized by solar cells at an efficiency of 10% can provide all necessary energy. Since the development of low cost and high efficiency dye-sensitized solar cells (DSSCs) are of great importance and interest, the main objectives of this work were: (1) Synthesis of TiO2 nanoparticles using titanium tetrachloride (TiCl4), (2) Recovery of nanosize TiO2 from Ti-humic acid sludge, (3) Preparation of low cost DSSC photoanodes, (4) Nanoporous TiO2 on DSSC photoanodes of DSSCs, and (5) Speciation of zinc in ZnO nanorod thin films.
Experimentally, it is found that the TiO2 nanoparticles containing mainly anatase can be synthesized with TiCl4. Under sunlight irradiation, the nanosize TiO2 photoanode have an 20% improvement of the overall energy conversion efficiency in comparison to the conventional photoanode made with titanium isopropoxide. TiO2 nanoparticles can also be prepared by calcination of the Ti-humic acid coagulation sludge at 723 K. The recycled TiO2 nanoparticle based DSSC has an efficiency of 5.12%.
The roughness factor of a DSSC photoanode can be improved by oxidization of nanosize hollow carbon spheres to form nanoporous in which dye adsorption can be enhanced. The nanopores in TiO2 can also promote transmittance to excite dye sensitizer uniformly.
The X-ray absorption near edge structure (XANES) spectra of zinc show that the main zinc species in the ZnO nanorod array on the photoanode are nanosize ZnO (88%) and Zn(OH)2 (12%). Adsorption of N3 (C26H20O10N6S2Ru) and mercurochrome (C20H8Br2HgNa2O6) dyes on the ZnO nanorods involves in chemical interaction and causes decreases the nanosize ZnO fractions from 88 to 83 and 80%, respectively. The extended X-ray absorption fine structure (EXAFS) spectra also indicate that the coordination numbers (CNs) of the ZnO nanorod photoanode adsorbed with N3 and mercurochrome are 4.6 and 4.8, respectively.
Ahn, K. S., M. S. Kang, J. K. Lee, B. C. Shin and J. W. Lee (2006), "Enhanced electron diffusion length of mesoporous TiO2 film by using Nb2O5 energy barrier for dye-sensitized solar cells", Applied Physics Letters, 89, (1), 013103.
An, H. J., S. R. Jang, R. Vittal, J. Lee and K. J. Kim (2005), "Cationic surfactant promoted reductive electrodeposition of nanocrystalline anatase TiO2 for application to dye-sensitized solar cells", Electrochimica Acta, 50, (13), 2713-2718.
Bach, U., D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel (1998), "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies", Nature, 395, (6702), 583-585.
Barbe, C. J., F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Gratzel (1997), "Nanocrystalline titanium oxide electrodes for photovoltaic applications", Journal of the American Ceramic Society, 80, (12), 3157-3171.
Baxter, J. B. and E. S. Aydil (2005), "Nanowire-based dye-sensitized solar cells", Applied Physics Letters, 86, (5),
Baxter, J. B., A. M. Walker, K. van Ommering and E. S. Aydil (2006), "Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells", Nanotechnology, 17, (11), S304-S312.
Bornside, D. E., C. W. Macosko and L. E. Scriven (1987), "On the modeling of spin coating", Journal of Imaging Technology, 13, (4), 122-130.
Boschloo, G., J. Lindstrom, E. Magnusson, A. Holmberg and A. Hagfeldt (2002). Optimization of dye-sensitized solar cells prepared by compression method.
Cahen, D., G. Hodes, M. Gratzel, J. F. Guillemoles and I. Riess (2000), "Nature of photovoltaic action in dye-sensitized solar cells", Journal of Physical Chemistry B, 104, (9), 2053-2059.
Chapin, D. M. F., C. S.; Pearson, G. L. (1954), "A new silicon p-n junction photocell for converting solar radiation into electrical power", Journal of Applied Physics, 25, 676-677.
Chappel, S. and A. Zaban (2002), "Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18 nm SnO2 colloids", Solar Energy Materials and Solar Cells, 71, (2), 141-152.
Chen, D. W. and A. K. Ray (1998), "Photodegradation kinetics of 4-nitrophenol in TiO2 suspension", Water Research, 32, (11), 3223-3234.
Drits, V., J. Srodon and D. D. Eberl (1997), "XRD measurement of mean crystalline thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation", Clays and Clay Minerals, 45, (3), 461-475.
Fukuri, N., Y. Saito, W. Kubo, G. K. R. Senadeera, T. Kitamura, Y. Wada and S. Yanagida (2004), "Performance improvement of solid-state dye-sensitized solar cells fabricated using poly(3,4-ethylenedioxythiophene) and amphiphilic sensitizing dye", Journal of the Electrochemical Society, 151, (10), A1745-A1748.
Gallard, H. and U. von Gunten (2002), "Chlorination of natural organic matter: kinetics of chlorination and of THM formation", Water Research, 36, (1), 65-74.
Gratzel, M. (2000), "Perspectives for dye-sensitized nanocrystalline solar cells", Progress in Photovoltaics, 8, (1), 171-185.
Gratzel, M. (2003), "Dye-sensitized solar cells", Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 4, (2), 145-153.
Gratzel, M. (2004), "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells", Journal of Photochemistry and Photobiology a-Chemistry, 164, (1-3), 3-14.
Gratzel, M. (2005), "Mesoscopic solar cells for electricity and hydrogen production from sunlight", Chemistry Letters, 34, (1), 8-13.
Gratzel, M. (2005), "Solar energy conversion by dye-sensitized photovoltaic cells", Inorganic Chemistry, 44, (20), 6841-6851.
Greijer, H., L. Karlson, S. E. Lindquist and A. Hagfeldt (2001), "Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system", Renewable Energy, 23, (1), 27-39.
Hagfeldt, A. and M. Gratzel (1995), "Light-induced redox reactions in nanocrystalline systems", Chemical Reviews, 95, (1), 49-68.
Hagfeldt, A. and M. Gratzel (2000), "Molecular photovoltaics", Accounts of Chemical Research, 33, (5), 269-277.
Han, L. Y., N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui and R. Yamanaka (2005), "Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance", Applied Physics Letters, 86, (21),
Hore, S., C. Vetter, R. Kern, H. Smit and A. Hinsch (2006), "Influence of scattering layers on efficiency of dye-sensitized solar cells", Solar Energy Materials and Solar Cells, 90, (9), 1176-1188.
Hsiao, P. T., K. P. Wang, C. W. Cheng and H. S. Teng (2007), "Nanocrystalline anatase TiO2 derived from a titanate-directed route for dye-sensitized solar cells", Journal of Photochemistry and Photobiology a-Chemistry, 188, (1), 19-24.
Hsiung, T. L., H. P. Wang, Y. M. Lu and M. C. Hsiao (2006). In situ XANES studies of CuO/TiO2 thin films during photocatalytic degradation of CHCl3.
Huang, S. Y., G. Schlichthorl, A. J. Nozik, M. Gratzel and A. J. Frank (1997), "Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells", Journal of Physical Chemistry B, 101, (14), 2576-2582.
Huang, Y. J., H. P. Wang and J. F. Lee (2003), "Catalytic reduction of NO on copper/MCM-41 studied by in situ EXAFS and XANES", Chemosphere, 50, (8), 1035-1041.
Huang, Y. J., H. P. Wang and J. F. Lee (2003), "Speciation of copper in ZSM-48 during NO reduction", Applied Catalysis B-Environmental, 40, (2), 111-118.
Ito, S., Y. Makari, T. Kitamura, Y. Wada and S. Yanagida (2004), "Fabrication and characterization of mesoporous SnO2/ZnO-composite electrodes for efficient dye solar cells", Journal of Materials Chemistry, 14, (3), 385-390.
Jeong, W. J., S. K. Kim and G. C. Park (2006), "Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell", Thin Solid Films, 506, 180-183.
Kam, S. K. and J. Gregory (2001), "The interaction of humic substances with cationic polyelectrolytes", Water Research, 35, (15), 3557-3566.
Kasap, S. O. (2001), "Optoelectronics and Photonics: Principles and Practices",
Kay, A. and M. Gratzel (1996), "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder", Solar Energy Materials and Solar Cells, 44, (1), 99-117.
Kay, A. and M. Gratzel (2002), "Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide", Chemistry of Materials, 14, (7), 2930-2935.
Keis, K., J. Lindgren, S. E. Lindquist and A. Hagfeldt (2000), "Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes", Langmuir, 16, (10), 4688-4694.
Kitiyanan, A., S. Sakulkhaemaruethai, Y. Suzuki and S. Yoshikawa (2006), "Structural and photovoltaic properties of binary TiO2-ZrO2 oxides system prepared by sol-gel method", Composites Science and Technology, 66, (10), 1259-1265.
Koopal, L. K., W. H. van Riemsdijk and D. G. Kinniburgh (2001). Humic matter and contaminants. General aspects and modeling metal ion binding.
Landi, B. J., S. L. Castro, H. J. Ruf, C. M. Evans, S. G. Bailey and R. P. Raffaelle (2005), "CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells", Solar Energy Materials and Solar Cells, 87, (1-4), 733-746.
Law, M., L. E. Greene, J. C. Johnson, R. Saykally and P. D. Yang (2005), "Nanowire dye-sensitized solar cells", Nature Materials, 4, (6), 455-459.
Law, M., L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt and P. D. Yang (2006), "ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells", Journal of Physical Chemistry B, 110, (45), 22652-22663.
Li, B., L. D. Wang, B. N. Kang, P. Wang and Y. Qiu (2006), "Review of recent progress in solid-state dye-sensitized solar cells", Solar Energy Materials and Solar Cells, 90, (5), 549-573.
LIDE, D. R. (1992), "Handbook of Chemistry and Physics",
Maira, A. J., K. L. Yeung, C. Y. Lee, P. L. Yue and C. K. Chan (2000), "Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts", Journal of Catalysis, 192, (1), 185-196.
Murakami, T. N., Y. Kijitori, N. Kawashima and T. Miyasaka (2004), "Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation", Journal of Photochemistry and Photobiology a-Chemistry, 164, (1-3), 187-191.
Nazeeruddin, M. K., A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel (1993), "Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes", Journal of the American Chemical Society, 115, (14), 6382-6390.
Okuya, M., K. Nakade, D. Osa, T. Nakano, G. R. A. Kumara and S. Kaneko (2004), "Fabrication of dye-sensitized solar cells by spray pyrolysis deposition (SPD) technique", Journal of Photochemistry and Photobiology a-Chemistry, 164, (1-3), 167-172.
Oregan, B. and M. Gratzel (1991), "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature, 353, (6346), 737-740.
Papageorgiou, N., W. F. Maier and M. Gratzel (1997), "An iodine/triiodide reduction electrocatalyst for aqueous and organic media", Journal of the Electrochemical Society, 144, (3), 876-884.
Que, W. X., A. Uddin and X. Hu (2006), "Thin film TiO2 electrodes derived by sol-gel process for photovoltaic applications", Journal of Power Sources, 159, (1), 353-356.
Reddy, B. M., I. Ganesh and E. P. Reddy (1997), "Study of dispersion and thermal stability of V2O5/TiO2-SiO2 catalysts by XPS and other techniques", Journal of Physical Chemistry B, 101, (10), 1769-1774.
Sayama, K., H. Sugihara and H. Arakawa (1998), "Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye", Chemistry of Materials, 10, (12), 3825-3832.
Shon, H. K., S. Vigneswaran, I. S. Kim, J. Cho, G. J. Kim, J. B. Kim and J. H. Kim (2007), "Preparation of titanium dioxide (TiO2) from sludge produced by titanium tetrachloride (TiCl4) flocculation of wastewater", Environmental Science & Technology, 41, (4), 1372-1377.
Smestad, G., C. Bignozzi and R. Argazzi (1994), "Testing of dye-sensitized TiO2 solar-cells .1. Experimental photocurrent output and conversion efficiencies", Solar Energy Materials and Solar Cells, 32, (3), 259-272.
Sommeling, P. M., B. C. O'Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon and J. A. M. van Roosmalen (2006), "Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells", Journal of Physical Chemistry B, 110, (39), 19191-19197.
Tan, B. and Y. Y. Wu (2006), "Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites", Journal of Physical Chemistry B, 110, (32), 15932-15938.
Wang, P., Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Gratzel (2004), "Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar CeN", Journal of the American Chemical Society, 126, (42), 13590-13591.
Wang, P., C. Klein, R. Humphry-Baker, S. M. Zakeeruddin and M. Gratzel (2005), "Stable >= 8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility", Applied Physics Letters, 86, (12), 3.
Wang, P., S. M. Zakeeruddin, I. Exnar and M. Gratzel (2002), "High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte", Chemical Communications, (24), 2972-2973.
Wang, X. D., C. J. Summers and Z. L. Wang (2004), "Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays", Nano Letters, 4, (3), 423-426.
Wei, T. C., C. C. Wan and Y. Y. Wang (2006), "Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells", Applied Physics Letters, 88, (10), 3.
Williams, R. (1960), "Becquerel Photovoltaic Effect in Binary Compounds", Journal of Chemical Physics, 32, 1505-1514.
Wu, Y., H. M. Liu and B. Q. Xu (2007), "Solvothermal synthesis of TiO2: anatase nanocrystals and rutile nanofibres from TiCl4 in acetone", Applied Organometallic Chemistry, 21, (3), 146-149.
Xie, Z., B. M. Henry, K. R. Kirov, H. E. Smith, A. Barkhouse, C. R. M. Grovenor, H. E. Assender, G. A. D. Briggs, G. R. Webster, P. L. Burn, M. Kano and Y. Tsukahara (2006), "Study of the effect of changing the microstructure of titania layers on composite solar cell performance", Thin Solid Films, 511, 523-528.
Yen, C. Y., Y. F. Lin, S. H. Liao, C. C. Weng, C. C. Huang, Y. H. Hsiao, C. C. M. Ma, M. C. Chang, H. Shao, M. C. Tsai, C. K. Hsieh, C. H. Tsai and F. B. Weng (2008), "Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells", Nanotechnology, 19, (37),
Yoon, J. H., S. R. Jang, R. Vittal, J. Lee and K. J. Kim (2006), "TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells", Journal of Photochemistry and Photobiology a-Chemistry, 180, (1-2), 184-188.
Zaban, A., M. Greenshtein and J. Bisquert (2003), "Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements", Chemphyschem, 4, (8), 859-864.
Zouboulis, A. I., X. L. Chai and I. A. Katsoyiannis (2004), "The application of bioflocculant for the removal of humic acids from stabilized landfill leachates", Journal of Environmental Management, 70, (1), 35-41.