簡易檢索 / 詳目顯示

研究生: 蔡旻昌
Tsai, Min-Chang
論文名稱: 前驅物溶劑對於鈣鈦礦太陽能電池製程中電洞傳輸層的影響
The effect of the precursor solutions on the hole transport layer in fabricating perovskite-based solar cells
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 電洞傳輸層PEDOT:PSSNiOx極性溶劑鈣鈦礦太陽能電池
外文關鍵詞: hole transport layers, PEDOT:PSS, NiOx, polar solvents, perovskite solar cells
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在探討極性溶劑對於電洞傳輸層PEDOT:PSS之影響,我們藉由設計溶劑沖洗(solvent washing)的實驗方法,發現這些個別溶劑會改變元件的電性參數,並以許多量測方法驗證極性溶劑二甲基亞碸會使PEDOT:PSS的參雜比例發生改變。因此當我們使用混合極性溶劑配置鈣鈦礦前驅物溶液時,會觀察到前驅物溶液長時間停留在電洞傳輸層PEDOT:PSS上的影響和溶劑二甲基亞碸所改變元件電性的趨勢一樣。為了改善極性溶劑對電洞傳輸層的影響,最後我們成功以氧化鎳NiOx成功取代PEDOT:PSS,不僅能提升元件效率,且不會被極性溶劑改變元件電性表現。

    Perovskite solar cells (PSCs) have attracted considerable attention because of their low fabrication cost and impressive energy conversion efficiency. Since perovskite precursor solution is typically prepared from polar solvents, understanding the effect of polar solvents treatment of the PEDOT:PSS layer on the performance of perovskite solar cells is important for device processing optimization. Here, influence of the surface treatment of the PEDOT:PSS layer with solvents, including dimethyl sulfoxide (DMSO), and γ-butyrolactone (GBL), on the device performance of the perovskite solar cells was investigated. Increased conductivity was measured for the PEDOT:PSS film after solvent treatments, which was ascribed to the partial removal of PSS component from the PEDOT:PSS layer, as evidenced by the photoluminescence spectroscopy, UV-vis absorption spectroscopy and XPS spectroscopy. In comparison with the reference cell, poorer device performance was obtained for the perovskite solar cells directly deposited on the solvent washed PEDOT:PSS film. Finally, PEDOT:PSS was replaced by NiOx as a hole transport layer, successfully frabricating the device won’t be affected by polar solvents.

    摘要 I Extended Abstract II 致謝 IX 目錄 XI 圖目錄 XV 表目錄 XIX 第一章 緒論 1 1-1 前言 1 1-2 研究動機與大綱 5 1-2-1 研究動機 5 1-2-2 論文大綱 6 第二章 鈣鈦礦太陽能電池發展與太陽能電池工作原理 7 2-1 前言 7 2-2 太陽能工作原理與量測技術 9 2-2-1 無機太陽能電池工作原理 9 2-2-2 有機太陽能電池工作原理 11 2-2-3 標準量測光源定義 13 2-2-4 衡量太陽能電池優良的參數 15 2-3 鈣鈦礦太陽能電池發展歷史 19 2-4 鈣鈦礦薄膜的製作方法 25 2-4-1 一步驟製程法(One-step approach) 25 2-4-2 兩步驟製程法(Two-step approach) 35 2-4-3 氣相沉積法(Vapor-assisted film deposition approach) 37 2-4-4薄膜後處理 38 2-5 電洞傳輸層PEDOT:PSS簡介 41 2-5-1導電高分子起源 41 2-5-2 PEDOT:PSS介紹 41 2-5-3 PEDOT:PSS的特性 42 2-6 本章結論 47 第三章 元件製作與實驗步驟 48 3-1 鈣鈦礦平面異質接合太陽能電池基本架構 48 3-2 鈣鈦礦太陽能電池製備方法 50 3-2-1 ITO黃光製程(ITO pattern化) 50 3-2-2 電洞傳輸層的製作 51 3-2-3 電洞傳輸層以溶劑清洗(solvent washing)處理 53 3-2-4 主動層的製程 54 3-2-5 電子傳輸層和電洞阻擋層的製備 56 3-2-6 陰極製備 56 3-2-7 量測時加裝遮罩(Shadow Mask) 57 3-2-8元件封裝 58 3-3 元件光電電性之量測 59 3-3-1 I-V量測系統 59 3-3-2 IPCE量測系統 59 3-3-3 紫外-可見光吸收光譜儀(Ultraviolet-visible spectroscopy,UV-Vis) 60 3-3-4 光致發光光譜儀(photoluminescence, PL) 61 3-3-5 X射線光電子光譜儀(X-ray photoelectron spectroscopy, XPS) 62 3-3-6 紫外光電子光譜儀(Ultraviolet Photoelectron Spectroscopy, UPS) 62 3-3-7 掃描式電子顯微鏡(Scanning Electron Microscope) 63 3-4 本章結論 63 第四章 鈣鈦礦溶液停滯時間對元件之影響 64 4-1 前言 64 4-2 solvent washing對於元件的影響與分析 65 4-2-1 solvent washing對元件之I-V圖 65 4-2-2 solvent washing對元件之鈣鈦礦層分析 69 4-2-3 本節結論 74 4-3 PEDOT:PSS經由solvent washing後特性分析 75 4-3-1 solvent washing對元件之光譜分析 75 4-3-2 solvent washing對元件之元素分析(XPS) 81 4-3-3 solvent washing對元件之功函數分析(UPS) 82 4-3-4 solvent washing之機制 83 4-3-5 本節結論 84 4-4 鈣鈦礦前驅物溶液停滯時間對電洞傳輸層之影響 85 4-4-1 鈣鈦礦前驅物溶液停滯時間對PEDOT:PSS基底元件影響 85 4-4-2 鈣鈦礦前驅物溶液停滯時間對氧化鎳NiOx基底元件影響 88 4-4-3 本節結論 90 4-5 本章結論 91 第五章 總結與未來工作 92 5-1 總結 92 5-2 未來工作 93 參考文獻 95

    [1] W. G. Adams, R. Day, “The action of light on selenium”, Proc. R. Soc. London, 25, 113-117 (1876).
    [2] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new silicon p‐n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys. 25, 676-677 (1954).
    [3] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National Renewable Energy Laboratory, NREAL, accessed 27 June 2017).
    [4] N. Jain, M. K. Hudait, “Design for metamorphic dual junction InGaP GaAs solar cell on Si with efficiency greater than 29 % using finite element analysis”, 28th IEEE Photovoltaic Spec. Conf. 2056-2060 (2012).
    [5] J. P. Ponson, “A review of ohmic and rectifying contacts on cadmium telluride”, Solid-State Electronics 28, 689-706 (1985).
    [6] B. O’regan, M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353, 737-740 (1991).
    [7] J. C. Frankel, “Newcomer juices up the race to harness sunlight”, Science 342, 1438-1439 (2013).
    [8] F. D. Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. D. Carlo, S. Licoccia, W. M. M. Kessels, M. Creatore, T. M. Brown, “Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-Irradiated TiO2 scaffolds on plastic substrates”, Adv. Energy Mater. 5, 1401808 (2015).
    [9] F. Matteocci, L. Cinà, F. D. Giacomo, S. Razza, A. L. Palma, A. Guidobaldi, A. D'Epifanio, S. Licoccia, T. M. Brown, A. Reale, A. D. Carlo, “High efficiency photovoltaic module based on mesoscopic organometal halide perovskite”, Prog. Photovolt: Res. Appl. 24, 436-445 (2016).
    [10] S. -J. Moon, J. -H. Yum, L. L¨ofgren, A. Walter, L. Sansonnens, M. Benkhaira, S. Nicolay, J. Bailat, C. Ballif, “Laser-scribing patterning for the production of organometallic halide perovskite solar modules”, IEEE J. Photovolt. 5, 1087-1092 (2015).
    [11] S. Razza, F. D. Giacomo, F. Matteocci, L. Cinà, A. L. Palma, S. Casaluci, P. Cameron, A. D'Epifanio, S. Licoccia, A. Reale, T. M. Brown, A. D. Carlo, “Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process”, J. Power Sources 277, 286-291 (2015).
    [12] F. Matteocci, S. Casaluci, S. Razza, A. Guidobaldi, T. M. Brown, A. Reale, A. D. Carlo, “Solid state dye solar cell modules”, J. Power Sources 246, 361-364 (2014).
    [13] Y. Galagan, E. W. C. Coenen, W. J. H. Verheesc, R. Andriessena, “Towards the scaling up of perovskite solar cells and modules”, J. Mater. Chem. A 4, 5700-5705 (2016).
    [14] J. Seo, S. Park, Y. C. Kim, N. J. Jeon, J. H. Noh, S. C. Yoon, S. I. Seok, “Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells”, Energy Environ. Sci. 7, 2642 (2014).
    [15] S. Bai, Y. Jin, F. Gao, “Organometal halide perovskites for photovoltaic applications”, Adv. Funct. Mater. (eds A. Tiwari and L. Uzun), John Wiley & Sons, Inc., Hoboken, NJ, USA, 535-566 (2015).
    [16] H. -S. Kim, S. -H. Im, N. -G. Park, “Organolead halide perovskite: new horizons in solar cell research”, J. Phy. Chem. C 118, 5615-5625 (2014).
    [17] M. A. Green, A. Ho-Baillie, H. J. Snaith, “The emergence of perovskite solar cells”, Nat. Photonics 8, 506-514 (2014).
    [18] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3”, Solid State Commun. 127, 619-623 (2003).
    [19] S. R. Forrest, “The limits to organic photovoltaic cell efficiency”, MRS Bulletin 30, 28-32 (2005).
    [20] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene”, Science 258, 1474-1476 (1992).
    [21] P. W. Atkins, “Kurzlehrbuch physikalische Chemie”, Wiley-VCH , Germany, (2001).
    [22] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “Accurate measurement and characterization of organic solar cells”, Adv. Funct. Mater. 16, 2016-2023 (2006).
    [23] A. Moliton, J. -M. Nunzi, “How to model the behavior of organic photovoltaic cells”, Polym. Int. 55, 583-600 (2006).
    [24] C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, C. J. Brabec, “Physics of organic bulk heterojunction devices for photovoltaic applications”, J. Appl. Phys. 99, 104503-104508 (2006).
    [25] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc. 131, 6050-6051 (2009).
    [26] J. -H. Im, C. -R. Lee, J. -W. Lee, S. -W. Park, N. -G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell”, Nanoscale 3, 4088-4093 (2011).
    [27] J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. -L. Cevey-Ha, C. Yi, M. K. Nazeeruddin, M. Grätzel, “Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells”, J. Am. Chem. Soc. 133, 18042-18045 (2011).
    [28] I. Chung, B. Lee, J. He, R. P. H. Chang, M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency”, Nature 485, 486-489 (2012).
    [29] H. -S. Kim, C. -R. Lee, J. -H. Im, K. -B. Lee, T. Moehl, A. Marchioro, S. -J. Moon, R. Humphry-Baker, J. -H. Yum, J. E. Moser, M. Grätzel, N. -G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%”, Sci. Rep. 2, 591 (2012).
    [30] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites”, Science 338, 643-647 (2012).
    [31] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Grätzel, M. K. Nazeeruddin, H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers”, Nat. Photonics 8, 128-132 (2014).
    [32] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells”, J. Am. Chem. Soc. 134, 17396-17399 (2012).
    [33] J. -H. Heo, S. -H. Im, J. -H. Noh, T. N. Mandal, C. -S. Lim, J. -A. Chang, Y. -H. Lee, H. -J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, S. -I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing compound and polymeric hole conductors”, Nat. Photonics 7, 486-491 (2013).
    [34] J. -Y. Jeng, Y. -F. Chiang, M. -H. Lee, S. -R. Peng, T. -F. Guo, P. Chen, T. -C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells”, Adv. Mater. 25, 3727-3732 (2013).
    [35] J. Burschka, N. Pellet, S. -J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature 499, 316-319 (2013).
    [36] M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapor deposition”, Nature 501, 395-398 (2013).
    [37] H. Zhou, Q. Chen, G. Li, S. Luo, T. -b. Song, H. -S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells”, Science 345, 542-546 (2014).
    [38] D. Bi, C. Yi, J. Luo, J. -D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%”, Nature Energy 1, 16142 (2016).
    [39] D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. -P. C. Baena, J. -D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites”, Science Advances 2, e1501170 (2016).
    [40] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process”, Energy Environ. Sci. 7, 2359-2365 (2014).
    [41] G. Hodes, “Perovskite-based solar cells”, Science 342, 317-318 (2013).
    [42] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells”, Adv. Funct. Mater. 24, 151-157 (2014).
    [43] R. F. Service, “Turning up the light”, Science 342, 794-797 (2013).
    [44] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells”, Nat. Mater. 13, 897-903 (2014).
    [45] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. -B. Cheng, L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells”, Angew. Chem. 126, 10056-10061 (2014).
    [46] M. Nam, M. Cha, H. H. Lee, K. Hur, K. -T. Lee, J. Yoo, I. K. Han, S. J. Kwon, D. -H. Ko, “Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions”, Nat. Commun. 8, 14068 (2017).
    [47] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”, Nat. Mater. 6, 497-500 (2007).
    [48] Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency”, Nat. Mater. 11, 44-48 (2012).
    [49] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, J. Huang, “Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers”, Energy Environ. Sci. 8, 1544-1550 (2015).
    [50] K. Hwang, Y. -S. Jung, Y. -J. Heo, F. H. Scholes, S. E. Watkins, J. Subbiah, D. J. Jones, D. -Y. Kim, D. Vak, “Toward large scale roll-to-roll production of fully printed perovskite solar cells”, Adv. Mater. 27, 1241-1247 (2015).
    [51] C. -C. Chueh, C. -Y. Liao, F. Zuo, S. T. Williams, P. -W. Lianga, A. K. -Y. Jen, “The roles of alkyl halide additives in enhancing perovskite solar cell performance”, J. Mater. Chem. A 3, 9058-9062 (2015).
    [52] P. -W. Liang, C. -Y. Liao, C. -C. Chueh, F. Zuo, S. T. Williams, X. -K. Xin, J. Lin, A. K. -Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells”, Adv. Mater. 26, 3748-3754 (2014).
    [53] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”, Energy Environ. Sci. 7, 982-988 (2014).
    [54] F. Wang, H. Yu, H. Xu, N. Zhao, “HPbI3: A new precursor compound for highly efficient solution-processed perovskite solar cells”, Adv. Funct. Mater. 7, 1120-1126 (2015).
    [55] J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. -W. Lee, S. H. Im, “Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate”, Adv. Mater. 27, 3424-3430 (2015).
    [56] H. -B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells”, Nanoscale 6, 6679-6683 (2014).
    [57] Y. -J. Jeon, S. Lee, R. Kang, J. -E. Kim, J. -S. Yeo, S. -H. Lee, S. -S. Kim, J. -M. Yun, D. -Y. Kim, “Planar heterojunction perovskite solar cells with superior reproducibility”, Sci. Rep. 4, 6953 (2014).
    [58] C. -Y. Chang, C. -Y. Chu, Y. -C. Huang, C. -W. Huang, S. -Y. Chang, C. -A. Chen, C. -Y. Chao, W. -F. Su, “Tuning perovskite morphology by polymer additive for high efficiency solar cell”, ACS Appl. Mater. Interfaces 7, 4955-4961 (2015).
    [59] W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells”, Nat. Commun. 6, 6124 (2015).
    [60] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3”, Science 342, 344-347 (2013).
    [61] L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li, H. Chen, “Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer”, J. Am. Chem. Soc. 7, 2674-2679 (2015).
    [62] Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, S. Hayase, “All-solid perovskite solar cells with HOCO-R-NH3+I– anchor-group inserted between porous titania and perovskite”, J. Phys. Chem. C 118, 16651-16659 (2014).
    [63] W. Nie, H. Tsai, R. Asadpour, J. -C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. -L. Wang, A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science 347, 522-525 (2015).
    [64] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gaobc, J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers”, Energy Environ. Sci. 7, 2619-2623 (2014).
    [65] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. -S. Duan, H. -H. Wang, Y. Liu, G. Li, Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process”, J. Am. Chem. Soc. 136, 622-625 (2014).
    [66] Q. Chen, H. Zhou, T. -B. Song, S. Luo, Z. Hong, H. -S. Duan, L. Dou, Y. Liu, Y. Yang, “Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells”, Nano Lett. 14, 4158-4163 (2014).
    [67] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater. 4, 864-868 (2005).
    [68] G. Li, R. Zhu, Y. Yang, “Polymer solar cells”, Nat. Photonics 6, 153-161 (2012).
    [69] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement”, Adv. Mater. 26, 6503-6509 (2014).
    [70] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, G. Cui, “Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells”, Angew. Chem. Int. Ed. 54, 9705-9709 (2015).
    [71] H. J. Ahonen, J. Lukkari, J. Kankare, “n- and p-doped poly(3,4-ethylenedioxythiophene):  two electronically conducting states of the polymer”, Macromolecules 33, 6787-6793 (2000).
    [72] H. W. Heuer, R. Wehrmann, S. Kirchmeyer, “Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate)”, Adv. Funct. Mater. 12, 89-94 (2002).
    [73] Y. Furukawa, “Electronic absorption and vibrational spectroscopies of conjugated conducting polymers”, J. Phys. Chem. 100, 15644-15653 (1996).
    [74] Y. Wang, “Research progress on a novel conductive polymer-poly(3,4-ethylenedioxythiophene) (PEDOT)”, J. Phys.: Conf. Ser. 152, 012023 (2009).
    [75] E. A. Bazzaoui, G. Levi, S. Aeiyach, J. Aubard, J. P. Marsault, P. C. Lacaze, “SERS Spectra of Polythiophene in Doped and Undoped States”, J. Phys. Chem. 99, 6628-6634 (1995).
    [76] A. V. Kubarkov, O. A. Pyshkina, V. G. Sergeyev, “Synthesis and physicochemical properties of copolymers of aniline and 3,4-ethylenedioxythiophene”, Polym. Sci. Ser. B 56, 360-368 (2014).
    [77] S. Garreau, G. Louarn, J. P. Buisson, G. Froyer, S. Lefrant, “In Situ Spectroelectrochemical raman studies of poly(3,4-ethylenedioxythiophene) (PEDT)”, Macromolecules 32, 6807-6812 (1999).
    [78] H. Yamato, M. Ohwa, W. Wernet, “Stability of polypyrrole and poly(3,4-ethylenedioxythiophene) for biosensor application”, J. Electroanal. Chem. 397, 163-170 (1995).
    [79] Y. Xia, K. Sun, J. Ouyang, “Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices”, Adv. Mater. 24, 2436-2440 (2012).
    [80] D. Alemu, H. -Y. Wei, K. -C. Ho, C. -W. Chu, “Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells”, Energy Environ. Sci. 5, 9662-9671 (2012).
    [81] J. Y. Kim, J. H. Jung, D. E. Lee, “Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents”, Synth. Met. 126, 311-316 (2002).
    [82] C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, “Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells”, Nat. Commun. 6, 7747 (2015).
    [83] M. P. de Jong, L. J. van IJzendoorn, M. J. A. de Voigt, “Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes”, Appl. Phys. Lett. 77, 2255 (2000).
    [84] D. T. Moore, H. Sai, K. W. Tan, L. A. Estroff, U. Wiesner, “Impact of the organic halide salt on final perovskite composition for photovoltaic applications”, APL Mater. 2, 081802 (2014).
    [85] Y. -K. Chih, J. -C. Wang, R. -T. Yang, C. -C. Liu, Y. -C. Chang, Y. -S. Fu, W. -C. Lai, P. Chen, T. -C. Wen, Y. -C. Huang, C. -S. Tsao, T. -F. Guo, “NiOx Electrode Interlayer and CH3NH2/CH3NH3PbBr3 Interface Treatment to Markedly Advance Hybrid Perovskite-Based Light-Emitting Diodes”, Adv. Mater. 28, 8687-8694 (2016).

    無法下載圖示 校內:2022-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE