簡易檢索 / 詳目顯示

研究生: 劉晉嘉
Liu, Chin-Chia
論文名稱: 混合微分轉換與有限差分法在非線性靜電驅動微結構系統動態特性之研究
Application of Hybrid Differential Transformation and Finite Difference Method on the Dynamic Analysis of Nonlinear Electrostatic-Actuating Microsystems
指導教授: 賴新一
Lai, Hsin-Yi
陳朝光
Chen, Cha`o-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 150
中文關鍵詞: 微結構樑微結構圓板混合法微分轉換法靜電致動器吸附電壓微機電系統
外文關鍵詞: Micro beam, Differential transformation method (D.T.M), Micro circular plate, MEMS, Pull-in voltage, Electrostatic actuator, Hybrid method (H.M)
相關次數: 點閱:156下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用微分轉換結合有限差分法探討在微結構系統與靜電場耦合效應、殘留應力及雜散電場效應的複雜影響下,受靜電驅動之微結構系統的動態特性研究。
    首先介紹微分轉換理論的基本定義、性質及推導演算方法,接著應用微分轉換法將微橋狀樑之統御方程式轉換成迭代方程,藉由符號運算及在頻率方程式上做簡單代數計算,可以得到微橋狀樑的自然頻率;其次,說明殘留應力及雜散電場效應對微結構系統的影響,並利用混合微文轉換與有限差分法(混合法)求解微結構樑在靜電驅動下受殘留應力及雜散電場效應影響的吸附電壓。同時,亦應用混合法分析在殘留應力與流體靜壓力效應影響下,受靜電驅動之微泵膜片的暫態行為;最後,探討在直流與交流驅動電壓結合下,受靜電驅動之微橋狀樑的動態行為。
    研究結果顯示使用混合法所求解的吸附電壓與文獻中的實驗值或其他數值相互比較,其誤差皆在2%內,堪稱非常精確。因此,混合微分轉換與有限差分法是一個比其他分析方法更簡單、更具系統性來求解非線性偏微分方程式的有力工具。

    This study, the hybrid differential transformation and finite difference method, is employed to analyze the dynamic behavior of an electrostatically actuated micro-structure system under the complexity influence of the interactions between the electrostatic coupling effect, the residual stress and the fringing field effect.
    First, the basic definitions, properties and calculation are introduced. The governing equation of the micro fixed-fixed beam is solved using the differential transformation to become an algebraic equation that is suitable for symbolic computation. Then, the natural frequency of the micro fixed-fixed beam can be obtained. Second, applying the differential transformation and finite difference method (hybrid method) solve the governing equation of an electrostatically actuated micro system to obtain the pull-in voltage and the effect of fringing field to micro system is mentioned. The hybrid scheme is employed to analyze the pull-in phenomenon of an electrostatically actuated micro circular plate system which explicit account is taken of both the hydrostatic pressure and the residual stress. Finally, this study proposes the actuation method that combines DC and AC loading and analyzes the dynamic response of the micro fixed-fixed beam.
    The results of this study show that applying hybrid scheme to solve the pull-in voltage is precise which the deviation is no more than 2% from those derived in the literature using a variety of different schemes. Overall, the hybrid differential transformation and finite difference method presents a simple and more systematic procedure in solving the linear and nonlinear equation than other analyses.

    目 錄 中文摘要------------------- I 英文摘要------------------- III 誌 謝------------------- ----------------------V 目 錄------------------- ----------------------VI 圖 目 錄------------------- ----------------------XI 表 目 錄------------------- ----------------------XVII 符號說明------------------- ----------------------XIX 第一章 緒論------------------------------------1 1.1 前言-----------------------------------------1 1-2 文獻回顧-------------------------------------3 1-2-1 微結構系統的吸附現象之文獻回顧-------------3 1-2-2 微結構系統的動態研究之文獻回顧-------------6 1-2-3 微分轉換法的文獻回顧-----------------------8 1-3 研究目的與本文架構---------------------------9 第二章 微分轉換法------------------------------16 2-1 前言-----------------------------------------16 2-2 微分轉換的數學原理---------------------------16 2-3 微分轉換的基本運算---------------------------20 2-3-1 線性運算-----------------------------------21 2-3-2 乘法運算-----------------------------------21 2-3-3 除法運算-----------------------------------22 2-3-4 微分運算-----------------------------------23 2-3-5 積分運算-----------------------------------24 2.4 微分轉換法在初始值問題之應用-----------------24 2-5 T譜儲存法------------------------------------27 第三章 應用微分轉換求解微結構系統之自然頻率----31 3-1 前言-----------------------------------------31 3-2 微結構系統受靜電力驅動之統御方程式推導-------31 3-2-1 平行板電容之原理---------------------------31 3-2-2 承受靜電力之微結構的能量式-----------------33 3-2-3 漢米爾頓定理之應用-------------------------35 3-3 雜散電場及殘留應力效應-----------------------36 3-3-1 雜散電場效應-------------------------------36 3-3-2 殘留應力效應-------------------------------38 3-4 應用微分轉換法求解微橋狀樑之自然頻率---------40 3-4-1 微橋狀樑之統御方程式-----------------------40 3-4-2 應用微分轉換-------------------------------42 3-5 結論-----------------------------------------46 第四章 靜電驅動微結構樑之吸附電壓研究----------54 4-1 前言-----------------------------------------54 4-2 吸附電壓-------------------------------------55 4-2-1 離散模型求解吸附電壓-----------------------57 4-3 求解微懸臂樑之吸附電壓-----------------------57 4-3-1 統御方程式的無因次化-----------------------58 4-3-2 混合微文轉換與有限差分法之應用-------------59 4-3-3 數值結果與討論-----------------------------63 4-4 求解微橋狀樑之吸附電壓-----------------------65 4-4-1 統御方程式的無因次化-----------------------65 4-4-2 混合微文轉換與有限差分法之應用-------------67 4-4-3 數值結果與討論-----------------------------70 4-5 結論-----------------------------------------72 第五章 非線性靜電驅動之微泵膜片動態研究--------89 5-1 前言-----------------------------------------89 5-2 靜電驅動膜片的統御方程式---------------------90 5-3 統御方程式的無因次化-------------------------92 5-4 混合微文轉換與有限差分法之應用---------------94 5-5 數值結果與討論-------------------------------99 5-6 結論-----------------------------------------102 第六章 結合直流和交流驅動電壓之微橋狀樑動態特性研究--112 6-1 前言 ----------------------------------------112 6-2 直流及交流靜電驅動之微橋狀樑的統御方程式-----113 6-3 統御方程式的無因次化-------------------------113 6-4 混合微文轉換與有限差分法之應用---------------116 6-5 數值結果與討論-------------------------------121 6-6 結論-----------------------------------------123 第七章 結論與建議------------------------------134 7-1 結論-----------------------------------------134 7-2 未來研究方向與建議---------------------------136 參考文獻-----------------------------------------138 附錄 A:(4-2-3)式之推導--------------------------146 自 述-----------------------------------------148 個人著作-----------------------------------------149

    [1] Chen, C. K., and Ho, S.H., (1996), ”Application of Differential Transformation to Eigenvalue problem,” Applied Mathematics and Computation, vol.79, pp.173–188.
    [2] Chen, C. K., and Ho, S.H., (1998), “Free Vibration Analysis of non-uniform Timoshenko Beams Using Differential Transform,” Transactions of the Canadian Society for Mechanical Engineering, vol. 22, no. 3, pp. 231–250.
    [3] Chen, C. L., and Liu, Y. C., (1998), “Solution of Two-Boundary-Value-Problems Using the Differential Transform Method,” Journal of Optimization Theory and Application, vol. 99, pp. 23–35.
    [4] Chen, J., Kang, S. M., Zou, J., and Liu, C., (2004), “Reduced-Order Modeling of Weakly Nonlinear MEMS Devices With Taylor-Series Expansion and Arnoldi Approach,” Journal of Microelectromechanical Systems, vol. 13, no. 3, pp. 441–451.
    [5] Cheng, J., Zhe, J., Wu, X., Farmer, F. R., Modi, V., and Frechette, L., (2002), “Analytical and FEM Simulation Pull-in Study on Deformable Electrostatic Micro Actuators,” Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems, Puerto Rico, U.S.A., April 22-25, pp. 298–301.
    [6] Chiou, J. S., and Tzeng, J. R., (1996), “Application of Taylor Transformation to Nonlinear Vibration Problems,” Trans. ASME, J of Vibration and Acoustics, vol. 118, pp. 83–87.
    [7] Chowdhury, S., Ahmadi, M., and Miller, W. C., (2005), “A Comparison of Pull-in Voltage Calculation Methods for MEMS-Based Electrostatic Actuator Design,” 1st International Conference on Sensing Technology November 21–23, Palmerston North, New Zealand.
    [8] Clark, J. V., Zhou, N., and Pister, K. S. J., (2000), “Modified Nodal Analysis for MEMS with Multi-Energy Domains,” San Diego, CA, United States, pp. 723–726.
    [9] Gao, S. Q., and Liu, H. P., (2008), Micro-Electro-Mechanical System Dynamics, National defense industry Press, China.
    [10] Gupta, R. K., (1997), “Electrostaic Pull-in Test Structure Design for In-situ Mechanical Property Measurements of Microelectromechanical Systems (MEMS),” Ph.D. Dissertation, Massachusetts Institute of Technology, MA., U.S.A.
    [11] Gupta, R. K., Osterberg, P. M., and Senturia, S. D., (1996), “Material Property Measurements of Micromechanical Polysilicon Beams,” Proceedings of SPIE, vol. 2880, pp. 39–45.
    [12] Hirai, Y., Marushima, Y., Nishikawa, K., and Tanaka, Y., (2000), “Young’s Modulus Evaluation of Si Thin Film Fabricated by Compatible Process with Si MEMS’s,” International Microprocesses and Nanotechnology , 11-13 July, pp. 82–83.
    [13] Hu, Y. C., Chang, C. M., and Huang, S. C., (2004), “Some Design Considerations on the Electrostatically Actuated Microstructures,” Sensors and Actuators A, vol. 112, pp. 155–161.
    [14] Hung, E. S., Yang, Y. J., and Senturia, S. D., (1997), “Low-Order Models for Fast Dynamical Simulation of MEMS Microstructures,” International Conference on Solid-State Sensors and Actuators, pp. 1101–1104.
    [15] Jang, M. J., Chen, C. L. and Liu, Y. C., (2001), “Two-Dimensional Differential Transform for Partial Differential Equations,” Applied Mathematics and Computation, vol. 121, pp. 261–270.
    [16] Kuang, J. H., and Chen, C. J., (2005), “Adomian Decomposition Method Used for Solving Nonlinear Pull-In Behavior in Electrostatic Micro-Actuators,” Mathematical and Computer Modelling, vol. 41, pp. 1478–1491.
    [17] Kuo, B. L., Chen, C. K., (2003), “Application of the Hybrid Method to the Solution of the Nonlinear Burgers’ Equation,” ASME J. Appl. Mech., vol. 70, pp. 926–929.
    [18] Lishchynska, M., Cordero, N., Slattery, O., and O'Mahony, C., (2005), “Modelling Electrostatic Behaviour of Microcantilevers Incorporating Residual stress Gradient and Non-ideal Anchors,” Journal of Micromechanics and Microengineering, vol. 15, pp. S10–S14.
    [19] Najafi, K., and Suzuki, K., (1989), “A Novel Technique and Structure for the Measurement of Intrinsic Stress and Young's Modulus of Thin Films,” Proceeding of the IEEE MEMS, Salt Lake City, UT, February , pp. 96–97.
    [20] Nayfeh, A. H., and Younis, M. I. (2004), “A New Approach to the Modeling and Simulation of Flexible Microstructures Under the Effect of Squeeze-Film Damping,” J. Micromech. Microeng., vol. 14, pp. 170–181.
    [21] Nayfeh, A. H., Younis, M. I., and Abdel-Rahman, E. M., (2005), “Reduced-Order Models for MEMS Applications,” Nonlinear Dynamics, vol. 41, pp. 211–236.
    [22] O'Mahony, C., Hill, M., Duane, R., and Mathewson, A., (2003), “Analysis of Electromechanical Boundary Effects on the Pull-in of Micromachined Fixed-Fixed Beams,” Journal of Micromechanics and Microengineering, vol. 13, pp. S75–S80.
    [23] Osterberg, P. M. (1995): “Electrostatically Actuated Microelectromechancial Test Structures for Material Property Measurement,” Ph.D. dissertation, Mass. Instit. Tech., Cambridge, MA.
    [24] Osterberg, P. M., and Senturia, S. D., (1997), ‘‘M-test: a Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures,’’ J. Microelectromech. Syst., vol. 6 no. 2, pp. 107–118.
    [25] Osterberg, P. M., Yie, H., Cai, X., White, J., and Senturia, S. D., (1994), “Self-Consistent Simulation and Modeling of Electrostatically Deformed Diaphragms,” Proceedings of the IEEE Micro Electro Mechanical Systems, pp. 28–32.
    [26] Pamidighantam, S., Puers, R., Baert, K., and Tilmans, H. A. C., (2002), “Pull-in Voltage Analysis of Electrostatically Actuated Beam Structures with Fixed-Fixed and Fixed-Free End Conditions,” J. Micromech. Microeng. vol. 12, pp. 458–464.
    [27] Pavlovic, M. N., and Mabkoug, F. C., (1996), “Rayleigh Estimates of the Fundamental Frequencies of Vibration of Circular Plates,” Journal of Sound and Vibration, vol. 198, no.3, pp. 389–394.
    [28] Shikida, M., Sato, K., Takeshita K., and Suzuki, S., (1996), “Response Time Measurement of Electrostatic S-shaped Film Actuator Related to Environmental Gas Pressure Conditions,” Proc. IEEE MEMS Workshop, San Diego, pp. 210–215.
    [29] Soleymani, P., Sadeghian, H., Tahmasebi, A., and Rezazadeh, G., (2006), “Pull-in Instability Investigation of Circular Micro Pump Subjected to Nonlinear Electrostatic Force,” Sensors & Transducers Journal, vol. 69, no. 7, pp. 622–628.
    [30] Stewart, J. T., (1994), “Finite Element Modeling of Resonant Microelectromechanical Structures For sensing Applications,” Proceedings of the IEEE Ultrasonics Symposium, pp. 643–646.
    [31] Timoshenko, S., and Woinowsky, K., (1959), Theory of Plates and Shells, McFraw-Hill, Singapore.
    [32] Timoshenko, S., Donovan, H., and Weaver, (1974), Vibration Problems In Engineering, Wiley, New York, U.S.A.
    [33] Wang, H. X., Chen, G. Y., and Zhao, J., (2007), “Deflection of Circular Membrane Actuated Electrostatically in Micropump,” Nanotechnology and Precision Engineering, vol. 5, no. 1, pp. 64–66.
    [34] Wang, Q. X., Li, H., and Lam, K. Y., (2007), “Analysis of Microelectromechanical Systems (MEMS) Devices by the Meshless Point Weighted Least-Squares Method,” Comput. Mech. vol. 40, pp. 1–11.
    [35] Wen, F., Li, W., and Rong, H., (2004), “Creation of the Macromodel of Equivalent Circuit and IP Library for Clamped-Clamped Beam Microsensor,” Guti Dianzixue Yanjiu Yu Jinzhan/Research and Progress of Solid State Electronics, vol. 24, pp. 68–72.
    [36] Ying, J., and Chen, J. M., (2005), “Research on Terminal Behavior of Electrostatic Micropump,” Journal of Zhejiang University, Engineering Science, vol. 39, no. 5, pp. 628–636.
    [37] Younis, M. I., (2001), “Investigation of the Mechanical Behavior of Microbeam-Based MEMS Devices,” Master of Science Thesis, Virginia Polytechnic Institute and State University.
    [38] Yoshida, H., (2005), “The Wide Variety of Possible Applications of Micro-Thermofluid Control,” Microfluid Nanofluid, vol. 1, pp. 289–300.
    [39] Yu, L. T. and Chen, C. K., (1998), “Application of Taylor Transformation to Optimize Rectangular Fins with Variable Thermal Parameters,” Applied Mathematical Modelling, vol. 22, pp. 11–21.
    [40] Yu, L. T. and Chen, C. K., (1998), “The Solution of the Blasius Equation by the Differential Transform Method,” Mathl. Comput. Modelling, vol. 28, no.1, pp. 101–111.
    [41] Zengerle, R., Richter, A., and Sandmaier, H., (1992), “A Micro Membrane Pump with Electrostatic Actuation,” Micro Electro Mechanical Systems, Germany, pp. 19–24.
    [42] Zhang, J., and Li, W. H., (2006), “Method of System-Level Dynamic Simulation for A MEMS Cantilever Based on the Mechanical Description,” Chines Journal of sensors and actuators, vol. 19, pp. 1376–1380.
    [43] Zhang, W. M., and Meng, G., (2007), “Nonlinear Dynamic Analysis of Electrostatically Actuated Resonant MEMS Sensors Under Parametric Excitation,” IEEE SENSORS JOURNAL, vol. 7, no. 3, pp. 370–380.
    [44] Zhu, Y., and Espinosa, H. D., (2004), “Effect of Temperature on Capacitive RF MEMS Switch Performance—A Coupled-Field Analysis,” J. Micromech. Microeng., 14, pp. 1270–1279.
    [45] 趙家奎, (1986), 微分轉換及其在電路中的應用, 華中理工大學出版社.
    [46] 邱正田, (2005), 機械振動學概論, 五南圖書出版股份有限公司.

    下載圖示 校內:立即公開
    校外:2009-07-21公開
    QR CODE