| 研究生: |
黃彥博 Huang, Yen-Po |
|---|---|
| 論文名稱: |
分子馬達酵素蛋白之不可逆性因子耦合器假設 A hypothesis of Irreversibility Coupler on the motor protein |
| 指導教授: |
黃明哲
Huang, Ming-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 熵增 、分子馬達 、酵素蛋白 、熵 、線性非平衡態 |
| 外文關鍵詞: | entropy, linear non equilibrium thermodynamics, enzyme protein, entropy production rate, molecular motor |
| 相關次數: | 點閱:136 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物分子馬達乃一種特殊的酵素蛋白,包含了一般酵素蛋白所具有加速催化受質的能力,以及對外做功的能力。馬達蛋白利用的能量來源乃是儲存於ATP中的化學能。而馬達蛋白的構形在鍵結過程以及催化過程均有所變化,這些變化直接地影響馬達蛋白對外界的出力以及動作狀態,進而使得生物分子馬達得以對外做功。
本文提出不可逆性因子耦合器的概念,來解釋處於線性非平衡態熱力學過程中的生物分子馬達,在鍵結過程中蒐集系統外界的不可逆性。而處於線性非平衡態區的分子馬達,將會遵循最小熵增定律,因此本文猜測若如本文所言,將可發現熵增穩定以及熵增維持在低值的情況出現。因此我們使用兩篇實驗數據來佐證本文的猜測。
Molecular motor is a special kind of enzyme protein which is composed of abilities not only accelerating reactions but also working to the surrounding. The energy source is the chemical energy stored in ATP. Conformational changing during the binding and hydrolysis process directly infect the force output and mechanical state, and then, make the work out.
We proposed the concept of irreversibility coupler to explain the irreversibility collected by the molecular motor from the surrounding during the linear non equilibrium thermodynamics binding process. In this article, we make a coarse prediction.
We proposed the molecular motor following the Theory of minimum entropy production rate, therefore, the entropy will be linear to the force loading as it raised linearly. Experimental data is confirmed that the prediction of entropy production rate being steady.
1. Oster, G., Wang, H. How protein motors convert chemical energy into mechanical work. In Molecular Motors,M. Schliwa, ed. 207-228, Wiley-VCH (2002)
2. Noji, H., Yasuda, R., Yoshida, M., Kinosita, K. Jr. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997)
3. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr. & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001)
4. Oster, G., Wang, H. Why is the efficiency of the F1-ATPase so high? J. Bioenerg. Biomembr. 32, 459–469 (2000)
5. Oster, G., Wang, H. Reverse engineering a protein: the mechanochemistry of ATP synthase. Biochim. Biophys. Acta 1458, 482-510 (2000)
6. Yoshida, M.,Muneyuki, E. Hisabori, T. ATP synthase—a marvellous rotary engine of the cell. Nature Rev. Mol. Cell Biol. 2, 669–677 (2001)
7. Oster, G., Wang, H. ATP synthase: two motors, two fuels. Structure 7, 67-72 (1999)
8. Menz, R. I., Walker, J. E. Leslie, A. G. W. Crystal structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106, 331-341 (2001).
9. Sun, S., Wang, H. Oster, G. Asymmetry in the F1-ATPase and its Implications for the Rotational Cycle. Biophys. J. 83, 1373-1384 (2003)
10. Wang, H., Oster, G., “Ratchets, power strokes, and molecular motors,”Applied Physics A, 75, 315-323 (2002)
11. Weber, J., Senior, A.E. Bi-site catalysis in F1-ATPase: does it exist? J. Biol. Chem. 276, 35422–35428 (2001)
12. Nishizaka, T., Oiwa, K., Noji, H., Kimura, S., Muneyuki, E., Yoshida, M. & Kinosita, K. Jr. Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nature Struct. Biol. 11, 142-148 (2004)
13. Tanford.C, Mechanism of free energy coupling in active transport, Ann. Rev. Biochem. 52, 379-409 (1983)
14. Julicher. F., Ajdari A., Prost J., Modeling molecular motors, Rev. Mod. Phys. 69, 1269.1281. (1997)
15. Kedem O., Katchalsky A., Thermodynamic analysis of the permea-
bility of biological membranes to non-electrolytes, Biochim. Biophys. Acta 27 ,229. (1958)
16. Stryer, L. STRYER’S 生物化學 Fourth Edition. Chapter 17, 447-462
合計圖書出版社 (1995)
17.張志勤. 蛋白酵素F1-ATP合成酶之運動模擬.國立成功大學圖書館 ,1-59 (2003)
18. Wang H., Oster G., “Ratchets, power strokes, and molecular motors,” Applied Physics A, 75, 315-323 (2002)
19. Prigogine I., Introduction to Thermodynamics of Irreversible Processes, Wiley, New York (1967)
20. Kondepudi D., Prigogine I., Modern Thermodynamics,From Heat Engines to Dissipative Structures, Wiley, New York (1999)
21. Glansdorff P., Prigogine I., Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley, New York (1971)
22. Jou D., J.E. Llebot, Introduction to the Thermodynamics of Biological Processes, Prentice Hal, Englewood Cliffs, NJ (1990)
23. Katchalsky A., In Permeability and Function of Biological Membranes, L. Bolis, A. Katchalsky, R.D. Keynes, W.R. Loewnstein and B.A. Pethica, Eds., Elsevier, Amsterdam (1970)
24. Kedem O., in: A. Kleinzeller, A. Kotyk (Eds.), Membrane Transport and Metabolism, Academic Press, New York, 87 (1961)
25. Harada.T., Phenomenological energetics for molecular motors, Europhys. Lett., 70(1), 49-55 (2005)
26. Nishiyama M., Higuchi H., Yanagida T., Chemomechanical coupling of the forward and backward steps of single kinesin molecules , Nat. Cell. Biol., 4, 790 (2002)