簡易檢索 / 詳目顯示

研究生: 陳雨晶
Chen, Yu-Jing
論文名稱: 用溼式法製備鍶置換氫氧基磷灰石之研究
The study of strontium-substituted hydroxyapatite by wet process
指導教授: 李澤民
Lee, Tzer-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 91
中文關鍵詞: 鍶置換氫氧基磷灰石共沉澱法水熱法熱穩定性燒結行為
外文關鍵詞: strontium-substituted hydroxyapatite, co-precipitation method, hydrothermal method, thermal stability, sintering behavior
相關次數: 點閱:127下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統處理的鍶置換氫氧基磷灰石(Sr-HA)缺乏均勻性及雜相含量高,在燒結緻密時通常需要高溫處理,但高溫處理會造成晶粒過成長和相分解,導致材料缺乏化學穩定性而降低機械性質。因此本研究使用水熱法合成粉末,製備出純度高、均勻的粉末,在較低溫度下進行燒結處理,避免因高溫處理造成材料機械強度降低。
    首先利用共沉澱法(Co-precipitation method)和水熱法(Hydrothermal method)合成不同比例之0, 1, 5, 10 atom% Sr-HA,此為探討不同製備方法對Sr-HA粉末及燒結體的影響。X-ray繞射儀與EDS鑑定粉末的相組成及成份。結果此二種方法製備出來的Sr-HA粉末皆無雜相產生,且(Ca+Sr)/P符合1.67,Sr/(Ca+Sr)的值皆符合理論值。在熱性質分析方面,水熱法合成的Sr-HA粉末具有良好的熱穩定性,鍶含量的添加會使粉末熱穩定性變差。在燒結行為分析中,將乾燥Sr-HA粉末壓成塊材,進行800oC、900oC和1000oC各2小時的燒結處理,探討其燒結行為。以SEM觀察燒結體的表面形態,發現在燒結溫度800oC、900oC只有頸縮現象,在燒結溫度1000oC有明顯的晶粒成長現象,水熱法之Sr-HA燒結體較為緻密,且發現隨著鍶含量增加,緻密化現象愈差,原因是鍶會抑制晶粒的成長。最後利用維氏硬度機量測燒結體的表面硬度,發現水熱法的Sr-HA燒結體硬度較高。上述結果證實不同合成方法會影響粉末的燒結行為,由其以水熱法製備之Sr-HA粉末具有良好的燒結行為,預期未來水熱法製備之Sr-HA粉末在骨填充物材料方面具有很大的發展潛力。

    Conventionally processed strontium-substituted hydroxyapatite (Sr-HA) materials are very challenging to sinter; densification has typically required high temperatures but high temperature would result in grain growth and decomposition which induce poor mechanical and chemical stability. In this study, hydrothermal method was used to prepare Sr-HA powders with phase purity and homogeneity. Sr-HA powders as high quality apatite-based bioceramics can be generated at low sintering temperatures.
    Co-precipitation and hydrothermal method were used to prepare Sr-HA powders. Sr-HA powders were synthesized at 0, 1, 5, and 10 atom% of strontium contents, respectively. The aim of this study was to investigate the effects of different methods on the properties of Sr-HA powders and sintered bodies. X-ray diffraction and EDS were used to investigate composition of the powders. The results showed that the calculated (Ca+Sr)/P ratio and Sr/(Ca+Sr) ratios were close to the stoichiometric value. No decomposition was identified by X-ray diffraction. In the thermal analysis, powders of hydrothermal synthesis had good thermal stability, and Sr content increased powders were thermally unstable. In the sintering behavior, the dried powder was hydrostatically pressed into disk-shaped compacts and then compacts were sintered at 800oC, 900 oC, and 1000 oC for 2h. The obtained Sr-HA sintered bodies had high density at 1000 oC. Sintered bodies of hydrothermal method were denser and found that as the strontium content increased, the densification was worse due to strontium inhibiting grain growth. A micro-Vickers indentation method was carried out to determine the Vickers hardness and found sintered bodies of hydrothermal method were higher hardness. In conclusion, it was showed that the different methods affect sintering behavior, and Sr-HA powders of hydrothermal method have excellent potential for bone filler applications in the future.

    摘要 II Abstract III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1生醫材料的分類 1 1-2生醫材料的應用 2 第二章 文獻回顧與理論基礎 4 2-1 氫氧基磷灰石 4 2-1-1氫氧基磷灰石的基本性質 4 2-1-2氫氧基磷灰石在室溫下水溶液中之穩定性 4 2-2氫氧基磷灰石的離子置換 4 2-2-1一般離子的置換種類 4 2-2-2鍶離子的置換 5 2-3氫氧基磷灰石的高溫相穩定性 6 2-4結晶理論與機制 8 2-4-1成核理論 8 2-4-2晶體成長 9 2-4-3溶質濃度與晶體成核、成長之關係 9 2-4-4自由能之影響 10 2-5氫氧基磷灰石的合成 11 2-6共沉澱法 12 2-7水熱法 13 2-7-1水熱法原理 13 2-7-2水熱法優點 14 2-8固相燒結理論 15 2-8-1固相燒結模式 15 2-8-2晶粒成長 15 2-8-3凝聚體粉末之燒結行為 16 2-9研究目的 16 第三章 材料及方法 18 3-1實驗藥品 18 3-2 實驗步驟及相關參數 18 3-2-1共沉法 18 3-2-2水熱法 18 3-3 粉末備製 19 3-3-1共沉法 19 3-3-2水熱法 19 3-4 粉末性質分析 20 3-4-1成分分析 20 3-4-2 相組成分析 20 3-4-3微結構分析 21 3-4-4傅立葉轉換紅外線吸收光譜分析(FT-IR spectrum) 21 3-4-5 粉末熱分析 22 3-4-6 粉末BET比表面積分析 22 3-5燒結製程 22 3-5-1比重量測 23 3-5-2表面顯微觀察 23 3-5-3 X光結晶繞射分析 23 3-5-4表面硬度量測 23 第四章 結果 25 4-1粉末結晶相分析 25 4-1-1製備方法 I:共沉法 25 4-1-2製備方法II:水熱法 26 4-2粉末成分分析 27 4-3粉末相鑑定 27 4-3-1繞射峰繞射角度之變化 27 4-3-2結晶粒徑(crystallite size) 28 4-3-3晶格常數a、c和體積、密度 28 4-4粒子形態分析 28 4-5傅立葉轉換紅外線吸收光譜 29 4-6粉末熱性質分析 29 4-7燒結製程分析 30 4-7-1粉末比表面積分析 30 4-7-2 Sr-HA燒結體之相對密度 31 4-7-3 Sr-HA燒結體之表面微觀分析 31 4-7-4 Sr-HA燒結體之X光結晶繞射分析 31 4-7-5 Sr-HA燒結體之硬度量測分析 32 第五章 討論 33 第六章 結論 39 參考文獻 41

    1. Sergey V. Dorozhkin, Bioceramics of calcium orthophosphates. Biomaterials 31(7),1465-1485 (2010)
    2. Adamopoulos O, and Papadopoulos T, Nanostructured bioceramics for maxillofacial applications. Journal of Materials Science: Materials in Medicine 18 (8), 1587-1597 (2007)
    3. El-Ghannam, Ahmed, Bone reconstruction: from bioceramics to tissue engineering. Expert Review of Medical Devices 2(1), 87-101 (2005)
    4. R.Z. LeGeros, S. Lin, R. Rohanizadeh, D. Mijares, and J. P. LeGeros, Biphasic calcium phosphate bioceramics: preparation, properties and applications. Journal of Materials Science: Materials in Medicine 14(3), 201-209 (2003)
    5. G. Ramage, M.M. Tunney, S. Patrick, S.P. Gorman, and J.R. Nixon, Formation of propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials. Biomaterials 24(19),3221-3227 (2003)
    6. E. Erbe, J. Marx, T. Clineff, and L. Bellincampi, Potential of an ultraporous -tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. European Spine Journal 10(2), S141-S146 (2001)
    7. Jiming Zhou, Xingdong Zhang, Jiyong Chen, Shaoxian Zeng, and K. Groot, High-temperature characteristics of synthetic hydroxyapatite. Journal of Materials Science: Materials in Medicine 4(1),83-85 (1993)
    8. H.B. Pan , Z.Y. Li , W.M. Lam , J.C. Wong , B.W. Darvell , K.D.K. Luk , and W.W. Lu. Solubility of strontium-substituted apatite by solid titration. Acta Biomaterialia 5(5), 1678-1685 (2009)
    9. M. Bohner, Physical and chemical aspects of calcium phosphates used in spinal surgery.European Spine Journal 10(2), S114-S121 (2001)
    10. Thomas J. Webster, Elizabeth A. Massa-Schlueter, Jennifer L. Smith, and Elliot B. Slamovich. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials 25(11), 2111-2121 (2004)
    11. A. Balamurugan, G. Balossier, P. Torres, J. Michel, and J.M.F. Ferreira, Sol-gel synthesis and spectrometric structural evaluation of strontium substituted hydroxyapatite. Materials Science & Engineering C 29 (3),1006-1009 (2009)
    12. D. Farlay, G. Boivin, G. Panczer, A. Lalande, and P.J. Meunier, Long-term strontium ranelate administration in monkeys preserves characteristics of bone mineral crystals and degree of mineralization of bone. Journal of Bone and Mineral Research 20(9), 1569-1578 (2005)
    13. Elena Landi , Anna Tampieri , Giancarlo Celotti , Simone Sprio , Monica Sandri , and Giandomenico Logroscino, Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomaterialia 3(6), 961-969 (2007)
    14. Weichang Xue , Howard L. Hosick, Amit Bandyopadhyay, Susmita Bose,
    Chuanxian Ding, K.D.K. Luk, K.M.C. Cheung, and W.W. Lue, Preparation and cell-materials interactions of plasma sprayed strontium-containing hydroxyapatite coating. Surface and Coatings Technology 201(8), 4685-4693 (2007)
    15. S. Pors Nielsen, The biological role of strontium. Bone 35(3), 583-588 (2004)
    16. E. Boanini, P. Torricelli, M. Fini, and A. Bigi, Osteopenic bone cell response to strontium-substituted hydroxyapatite.Journal of Materials Science: Materials in Medicine 22(9),1-10 (2011)
    17. K. Qiu, X.J. Zhao, C.X. Wan, C.S. Zhao, and Y.W. Chen, Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials 27(8), 1277-1286 (2006)
    18. J. Zhou, X. Zhang, J. Chen, S. Zeng, and K. Groot, High temperature characteristics of synthetic hydroxyapatite. Journal of Materials Science: Materials in Medicine 4(1), 83-85 (1993)
    19. Reza Abbaschian, and Robert E. Reed-Hill, Physical metallurgy principles. (1991)
    20. 楊崇煒 水熱法與高溫後處理對電漿熔射氫氧基磷灰石塗層微觀組織及結合強度之效應 國立成功大學材料科學及工程學博士論文 (1995)
    21. Sang-Hoon Rhee, Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 23(4),1147-1152 (2002)
    22. R. N. Correia, M. C. F. Magalhães, P. A. A. P. Marques , and A. M. R. Senos, Wet synthesis and characterization of modified hydroxyapatite powders. Journal of Materials Science: Materials in Medicine 7(8), 501-505 (1996)
    23. M.R. Saeri , A. Afshar, M. Ghorbani, N. Ehsani, and C.C. Sorrell, The wet precipitation process of hydroxyapatite.Materials Letters 57(24-25),4064-4069 (2003)
    24. H. S. Liu, T. S. Chin, L. S. Lai, S. Y. Chiu, K. H. Chung, C. S. Chang, and M. T. Lui, Hydroxyapatite synthesized by a simplified hydrothermal method. Ceramics International 23(1), 19-25 (1997)
    25. http: //en.wikipedia.org/wiki/Hydrothermal_synthesis.
    26. 呂嘉駿 以水熱法成長二氧化鈦奈米線之研究 國立成功大學化學工程研究所碩士論文(2006)
    27. K.C.B. Yeong, J. Wang, and S.C.Ng, Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials 22(20), 2705-2712 (2001)
    28. Dean-Mo Liu, T. Troczynski, and Wenjea J. Tseng, Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials 22(13),1721-1730 (2001)
    29. Hae-Won Kim, Young-Hag Koh, Young-Min Kong, Jun-Gu Kang , and Hyoun-Ee Kim, Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method. Journal of Materials Science: Materials in Medicine 15(10), 1129-1134 (2004)
    30. R.A. Terpstra, P.P.A.C. Pex , and A.H. de Vries. Ceramic processing (1995)
    31. Edward S. Ahn, Nathaniel J. Gleason, Atsushi Nakahira, and Jackie Y. Ying, Nanostructure Processing of Hydroxyapatite-based Bioceramics. Nano Letters 1(3),149-153 (2001)
    32. K. Prabakaran, and S. Rajeswari, Spectroscopic investigations on the synthesis of nano-hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 74(5),1127-1134 (2009)
    33. Yingjun Wang, Shuhua Zhang , Kun Wei, Naru Zhao, Jingdi Chen, and Xudong Wang, Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Materials Letters 60(12),1484-1487 (2006)
    34. M. Kikuchi, A. Yamazaki, R. Otsuka, M. Akao, and H. Aoki, Crystal structure of sr-substituted hydroxyapatite synthesized by hydrothermal method. Journal of Solid State Chemistry 113(2),373-378 (1994)
    35. A. ŚAlósarczyk, E. Stobierska, Z. Paszkiewicz, and M. Gawlicki, Calcium phosphate materials prepared from precipitates with various calcium:phosphorus molar ratios. Journal of the American Ceramic Society 79(10), 2539-2544 (1996)
    36. M.D. O’Donnell , Y.Fredholm, A.de Rouffignac, and R.G. Hill, Structural analysis of a series of strontium-substituted apatites. Acta Biomaterialia 4(5), 1455-1464 (2008)
    37. Z.Y. Li, W.M. Lam, C. Yang, B. Xu, G.X. Ni, S.A. Abbah, K.M.C. Cheung, K.D.K. Luk, and W.W. Lu, Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials 28(7), 1452-1460 (2007)
    38. W.M. Lam , H.B. Pan , Z.Y. Li , C. Yang , W.K. Chan , C.T. Wong , K.D.K. Luk, and W.W. Lu, Strontium-substituted calcium phosphates prepared by hydrothermal method under linoleic acid-ethanol solution. Ceramics International 36(2),683-688 (2010)
    39. A. Stoch , A. Broz˙ek , S. Błaz˙ewicz ,W. Jastrze˛bski , J. Stoch, A. Adamczyk , and I. Ro´j, FTIR study of electrochemically deposited hydroxyapatite coatings on carbon materials. Journal of Molecular Structure 651-653(1),389-396 (2003)
    40. S. Raynaud, E. Champion, D. Bernache-Assollant, and P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23(4),1065-1072 (2002)
    41. B. Locardi, U.E. Pazzaglia, C. Gabbi, and B. Profilo, Thermal behaviour of hydroxyapatite intended for medical applications. Biomaterials 14(6), 437-441 (1993)
    42. X.L. Tang, X.F. Xiao, and R.F. Liu, Structural characterization of silicon- substituted hydroxyapatite synthesized by a hydrothermal method. Materials Letters 59(29-30), 3841-3846 (2005)
    43. Cai Shu, Wang Yanwei, Lv Hong, Peng Zhengzheng, and Yao Kangde, Synthesis of carbonated hydroxyapatite nanofibers by mechanochemical methods. Ceramics International 31(1):135-138 (2005)
    44. M.S. Djoˇsi ´c, V.B. Miˇskovi ´c-Stankovi ´c , S. Milonji´c , Z.M. Kaˇcarevi ´c-Popovi ´c , N. Bibi´c , and J. Stojanovi ´c, Electrochemical synthesis and characterization of hydroxyapatite powders. Materials Chemistry and Physics 111(1),137-142 (2008)
    45. Susmita Bose, Susanta Kumar Saha. Synthesis of hydroxyapatite nanopowders via sucrose-templated sol-gel method. Journal of the American Ceramic Society 86(6),1055-1057 (2003)
    46. Susmita Bose, and Susanta Kumar Saha. Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique. Chemistry of Materials 15(23), 4464-4469 (2003)
    47. Biao Liu, Shu-Hong Yu, Linjie Li, Fen Zhang Qiao Zhang, Masahiro Yoshimura, and Peikang Shen. Nanorod-direct oriented attachment growth and promoted crystallization processes evidenced in case of ZnWo4. Journal of Physical Chemistry B 108(9),2788-2792 (2004)
    48. S. Bose, A. Banerjee, S. Dasgupta, and A. Bandyopadhyay, Synthesis, processing,mechanical, and biological property characterization of hydroxyapatite whisker-reinforced hydroxyapatite composites. Journal of the American Ceramic Society 92(2),323-330 (2009)
    49. Xingyuan Guo, Ping Xiao, Jing Liu, and Zhijian Shen, Fabrication of nanostructured hydroxyapatite via hydrothermal synthesis and spark plasma sintering . Journal of the American Ceramic Society 88(4),1026-1029 (2005)
    50. G. Muralithran, and S. Ramesh, The effects of sintering temperature on the properties of hydroxyapatite. Ceramics International 26(2),221-230 (2000)
    51. Sergey V. Dorozhkin ,and Matthias Epple, Biological and Medical Significance of Calcium Phosphates. Angewandte Chemie International Edition 41(17),3130-3146 (2002)
    52. B. Wopenka, and J.D. Pasteris, A mineralogical perspective on the apatite in bone. Materials Science and Engineering: C 25(2),131-143 (2005)
    53. Sergey V. Dorozhkin, Amorphous calcium (ortho)phosphates.Acta Biomaterialia 6(12), 4457-4475 (2010)
    54. P.V. Riboud, Composition et stabilité des phases à structure d`apatite dans le système CaO-P2O5 - de fer-H2O à haute température. Ann Chim 8, 381-390 (1973)
    55. H. El Briak-BenAbdeslam, B. Pauvert, A. Terol , and P. Boudeville, Dry Mechanosynthesis of Strontium-Containing Hydroxyapatite from DCPD + CaO + SrO. Key Engineering Materials 254-256 (16), 103-106 (2004)
    56. Li Yan, Yadong Li , Zhao-Xiang Deng, Jin Zhuang, and Xiaoming Sun. Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods. International Journal of Inorganic Materials 3(7), 633-637 (2001)
    57. R.Vani, E. K. Girija, K. Elayaraja, S. Prakash Parthiban, R. Kesavamoorthy, and S. Narayana Kalkura, Hydrothermal synthesis of porous triphasic hydroxyapatite/(and )tricalcium phosphate. Journal of Materials Science: Materials in Medicine 20(1), S43-S48 (2009)
    58. Xingyuan Guo, Julie E. Gough, Ping Xiao, Jing Liu,and Zhijian Shen. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response.Journal of Biomedical Materials Research Part A 82A(4), 1022-1032 (2007)
    59. Hai-bin Zhang, Ke-chao Zhou, Zhi-you Li, Su-ping Huang, and Yan-zhong Zhao, Morphologies of hydroxyapatite nanoparticles adjusted by organic additives in hydrothermal synthesis. Journal of Central South University of Technology 16(6) 0871-0875 (2009)
    60. Jingbing Liu, Xiaoyue Ye, Hao Wang , Mankang Zhu, Bo Wang, and Hui Yan, The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceramics International 29(6):629-633 (2003)
    61. Kongjun Zhu, Kazumichi Yanagisawa , Rie Shimanouchi ,Ayumu Onda , and Koji Kajiyoshi. Preferential occupancy of metal ions in the hydroxyapatite solid solutions synthesized by hydrothermal method.Journal of the European Ceramic Society 26(4-5), 509-513 (2006)
    62. Anmin Hu, Ming Li, Chengkang Chang, and Dali Mao, Preparation and characterization of a titanium-substituted hydroxyapatite photocatalyst.Journal of Molecular Catalysis A: Chemical 267(1-2), 79-85 (2007)
    63. Terry Threlfall, Structural and thermodynamic explanations of Ostwald’s rule.Organic Process Research & Development 7(6), 1017-1027 (2003)
    64. Aidin Lak, Mahyar Mazloumi, Matin Mohajerani, Amir Kajbafvala, Saeid Zanganeh, Hamed Arami, and S. K. Sadrnezhaad, Self-assembly of dandelion-like hydroxyapatite nanostructures via hydrothermal method. Journal of the American Ceramic Society 91(10), 3292-3297 (2008)
    65. http://en.wikipedia.org/wiki/Ostwald_ripening

    無法下載圖示 校內:2022-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE