簡易檢索 / 詳目顯示

研究生: 董奕慶
Tung, Yi-Ching
論文名稱: 製備以 anti-HbA1c 標靶修飾之超順磁性氧化鐵奈米粒子與對 HbA1c 專一性檢測之應用
Preparation of anti-HbA1c conjugated super-paramagnetic iron oxide nanoparticles for the application on the specific detection of HbA1c
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 74
中文關鍵詞: 磁性奈米粒子糖化血紅素藥物標靶
外文關鍵詞: magnetic nanoparticles, hemoglobin a1c, drug targeted
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來伴隨著奈米科技的發展,磁性奈米材料廣泛應用於生物醫學領域。由於其獨特的超順磁特性,藉由外加磁場控制,磁性奈米粒子可作為體內標靶的載體,再連接上具專一辨識性之抗體免疫球蛋白,可較精準地標靶至病灶所在位置,以至抑制控
    制病情,甚至治癒,因此在生物醫學上相當具有研究與臨床實用價值。
    本研究以Fe(CO)5當作前驅物,利用有機相熱裂解法製備超順磁性鐵氧奈米粒子(Fe3O4@OA/OC),在其外層包覆3-aminopropyltriethoxysilane (APTES),以配位交換法改質成為親水相,而最後在表面接上糖化血紅蛋白抗體 (Anti-HbA1c),針對監控糖尿病的主要單元糖尿血紅蛋白 (hemoglobin A1c, HbA1c) 具有標靶專一吸附作用。研究過程中以X光繞射儀 (X-ray diffraction) 證實奈米磁性粒子為Fe3O4@OA/OC之晶相並估算其平均微晶尺寸;以傅立葉轉換紅外線光譜儀 (Fourier transform infrared spectroscopy, FT-IR)、熱重分析儀 (thermogravimetric analyzer, TGA) 及能量散射光譜儀 (energy dispersive spectrometer, EDS) 確認磁性粒子表面改質後無機矽烷的包覆;利用紫外光/可見光光譜儀 (UV/Vis spectrophotometer) 判斷Anti-HbA1c 是否修飾於親水性磁性粒子表面;以穿透式顯微鏡 (transmission electron microscope, TEM) 分析觀察Fe3O4@OA/OC、Fe3O4@APTES,以判斷矽烷配位交換反應的細節對於奈米粒子尺寸的影響,並估算平均粒徑分別為4.7± 0.7nm及10.6 ± 1.3nm;由超導量子干涉儀 (superconducting quantum interference device, SQUID) 所得之磁滯曲線得知Fe3O4@OA/OC及Fe3O4@ATPES的飽和磁化量分別為 39.73 emu/g與 25.23 emu/g,並且二者皆具有超順磁的性質,顯示在超順磁材料上披覆無機物質並不影響其磁性質。
    在醫療應用上,以Anti-HbA1c進行包覆,經由抗體包覆的磁性粒子可標靶至糖化血紅蛋白,並利用高效能液相層析儀 (high performance liquid chromatography, HPLC)
    進行分離鑑定,作進一步監測糖尿病之功效。

    In recent year, the nanotechnology have been applied in many fields like biomaterial and medical. Especially in magnetic nanoparticles, according to its specific property ‘superparamagnetic’, the magnetic nanoparticles would play an important role as drug carrier to do the in vivo diagnosis. Magnetic nanoparticles would attracted by external magnetic field to the lesions, and it would be more specific if the particle surface binding with active targeting ligand like drug or antibodies.
    In this research, the magnetic nanoparticles were synthesized by thermal decomposition to form Fe3O4@OA/OC nanoparticles, then modified by 3-aminopropyltriethoxy silane (APTES) to make the nanoparticles surface covered of amino group to enhance hydrophilicity. Finally we conjugated anti-HbA1c on nanoparticles in order to target HbA1c antigen to monitor diabetes.
    Transmission electron microscopy (TEM) images reveals that Fe3O4¬@OA/OC were monodisperse in n-hexane, and its diameter was estimated to be 4.7± 0.7nm, after APTES modified the particles aggregated, the Fe3O4@APTES diameter enlarged to 10.6± 1.3nm. X-ray diffraction (XRD) analysis confirmed that the crystalline plane is the same between Fe3O4@OA/OC & Fe3O4@APTES, thermogravimetric analysis (TGA) observed the weight loss to make sure that APTES were successfully modified on particle surface, Fourier transform infrared spectroscopy (FT-IR) could also approve the fact by the peaks different between Fe3O4@OA/OC and Fe3O4@APTES, finally the magnetization is analyzed by superconducting quantum interference device (SQUID), the saturated magnetization of Fe3O4@OA/OC and Fe3O4@APTES were 39.73 emu/g and 25.23 emu/g respectively.
    In biofunctional magnetic nanoparticles section, Fe3O4@APTES conjugated with Anti-HbA1c (Anti-Fe3O4) were identified by FT-IR, there was a special peak shown on the spectrum at 400-500 cm-1 represented antibodies S-S bond. The supernatant which magnetic nanoparticles immune with antibodies was analyzed by ultraviolet-visible (UV/Vis), the results shown that about 4.438 mg Anti-HbA1c conjugated on nanoparticles surface. Finally we did an in vitro test to observe whether the biofunctional particles will traced HbA1c or not, the results of HPLC approved that Anti-Fe3O4 could successfully target to HbA1c, so the biofuctional magnetic nanoparticles could further monitored diabetes patients’ blood HbA1c concentration.

    中文摘要 II Abstract III 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 奈米材料簡介 1 1-1-1 奈米材料特性 1 1-1-2 磁性奈米粒子之簡介 2 1-1-3 磁性奈米粒子之製備 4 1-1-4 磁性奈米粒子之表面修飾 9 1-1-5 磁性奈米粒子在生物醫學上之應用 11 1-2 抗體 14 1-2-1 抗體簡介 14 1-3 糖化血紅蛋白 (Hemoglobin A1c) 16 1-4 文獻回顧 17 第二章 實驗方法與材料 19 2-1 實驗合成步驟 19 2-1-1 磁性奈米粒子 (Fe3O4@OA/OC) 之製備 19 2-1-2 磁性奈米粒子之親水性改質 (Fe3O4@APTES) 19 2-2 生物功能性粒子之合成及進行抗原標靶 21 2-2-1 生物功能性奈米粒子 (Fe3O4@APTES@Anti-HbA1c,Anti-Fe3O4) 21 2-2-2 抗體-抗原之接枝流程 21 2-2-3 專一性標靶流程 21 2-2-4 . Fe3O4@APTES分散液沉澱實驗 23 2-2-5 抗體校正線製備方法 23 2-2-6 抗原校正線製備方法 23 2-3 相關分析儀器與樣品製備 24 2-3-1 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 24 2-3-2 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 24 2-3-3 X光繞射儀 (X-ray diffractometer, XRD) 25 2-3-4 超導量子干涉儀 (Superconductor quantum interference device, SQUID) 25 2-3-5 能量散佈光譜儀 (Energy dispersive spectrometer, EDS) 25 2-3-6 紅外線光譜儀 (Fourier transform infrared spectrophotometer, FT-IR) 26 2-3-7 紫外線/可見光分光光譜儀 (UV/Vis spectrophotometer, UV-Vis) 26 2-3-8 熱重分析儀 (Thermogravimetric analysis, TGA) 26 2-3-9 高效能液相層析儀 (High performance liquid chromatography, HPLC) 26 2-4 實驗藥品 27 2-5 實驗儀器 30 第三章 結果與討論 31 3-1 磁性奈米粒子之製備 31 3-2 磁性奈米粒子實驗結果鑑定分析 32 3-2-1 TEM 影像分析 32 3-2-2 SEM 掃描式顯微鏡之表面圖像分析 42 3-2-3 EDS 表面元素分析 44 3-2-4 SQUID奈米粒子之磁性分析 46 3-2-5 TGA 熱重損失分析 51 3-2-6 XRD 晶相分析 53 3-2-7 FT-IR 紅外線光譜圖分析 56 3-2-8 UV-Vis 紫外/可見光譜圖分析 61 3-2-9 Bicinchoninic acid (BCA) 蛋白質鑑定分析 63 3-2-10 HPLC 分析 67 第四章 結論 68 參考文獻 69

    [1]. S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, and L. H. Allen, Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements, Phys. Rev. Lett., 77, 99-102, 1996
    [2]. A. H. Lu, E. L. Salabas, and F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 46, 1222-1244, 2007
    [3]. George C. Hadjipanayis, Nanophase hard magnets, J. Magn. Magn. Mater., 200, 373-391, 1999
    [4]. D. Farrel, S. A. Majetich, and J. P. Wilcoxon, J. Phys. Chem. B, 107, 11022-11030, 2003
    [5]. M. Salavati-Niasari, F. Davar, M. Mazaheri, and M. Shaterian, Preparation of cobalt nanoparticles from [bis(salicylidene)cobalt(II)]-oleylamine complex by thermal decomposition, J. Magn. Magn. Mater., 320, 575-578, 2008
    [6]. Y. Chen, D. L. Peng, D. Lin, and X. Luo, Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines, Nanotechnology, 18, 2007
    [7]. N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, and M. Niederberger, Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility, Chem. Mater., 17, 3044-3049, 2005
    [8]. A. Venkataraman, V. A. Hiremath, S. K. Date, and S. D. Kulkarni, A new combustion route to -Fe2O3 synthesis, P. Indian As-Math. Sci., 24, 617-621, 2001
    [9]. M. Chen, D. E. Nikles, Synthesis, self-assembly, and magnetic properties of FexCoyPt100-x-y nanoparticles, Nano Letters., 2, 211-214, 2002
    [10]. Q. Chen, A. J. Rondinone, B. C. Chakoumakos, Z. J. Zhang, Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation, J. Magn. Magn. Mater., 194, 1-7, 1999

    [11]. C. R. Vestal, and Z. J. Zhang, Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles, J. Am. Chem. Soc., 125, 9828-9833, 2003
    [12]. S. A. Rishton, Y. Lu, R. A. Altman, A. C. Marley, X. P. Bian, C. Jahnes, R. Viswanathan, G. Xiao, W. J. Gallagher, and S. S. P. Parkin, Magnetic tunnel junctions fabricated at tenth-micron dimensions by electron beam lithography, Microelectron Eng., 35, 249-252, 1997
    [13]. T. Prozorov, S. K. Mallapragada, B. Narasimhan, L. Wang, P. Palo, M. Nilsen-Hamilton, T. J. Williams, D. A. Bazylinski, R. Prozorov, and P. C. Canfield, Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals, Adv. Func. Mater., 17, 951-957, 2007
    [14]. M. Okuda, Jean-Charles Eloi, S. E. W. Jones, A. Sarua, R. M. Richardson, and W. Schwarzacher, Fe3O4 nanoparticles: protein-mediated crystalline magnetic superstructures, Nanotechnology, 23, 2012
    [15]. A. A. Bharde, R. Y. Parikh, M. Baidakova, S. Jouen, B. Hannoyer, T. Enoki, B. L. V. Prasad, Y. S. Shouche, S. Ogale, and M. Sastry, Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles, Langmuir, 24, 5787-5794, 2008
    [16]. G. W. Reimers, and S. E. Khalafalla, Production of magnetic fluids by peptization techniques, US. Patent, 540, 1974
    [17]. R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE. T. Magn., 17, 1247-1248, 1981
    [18]. A. K. Gupta, and S. Wells, Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies, IEEE T. Nanobiosci., 3, 66-73, 2004
    [19]. G. B. Shan, J. M. Xing, M. F. Luo, H. Z. Liu, and J. Y. Chen, Immobilization of Pseudomonas delafiedii with magnetic polyvinyl alcohol beads and its application in biodesulfurization, Bio. Lett., 25, 1977-1981, 2003

    [20]. Ajit Joseph M. D’Souza, Richard L. Schowen, Elizabeth M. Topp, Polyvinylpyrrolidone-drug conjugate: synthesis and release mechanism, J. Control Release, 94, 91-100, 2004
    [21]. A. K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical application, Biomaterials, 26, 3995-4021, 2005
    [22]. W. S. Seo, H. H. Jo, K. Lee, B. Kim, S. J. Oh, and J. T. Park, Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles, Angew. Chem., 43, 1115-1117, 2004
    [23]. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles, J. Am. Chem. Soc., 126, 273-279, 2004
    [24]. M. S. Niasari, M. Shaterian, M. R. Ganjali, and P. Norouzi, Oxidation of cyclohexane with tert-butylhydroperoxide catalysted by host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of N,N’-bis(salicylidene)phenylene-1,3-diamine) nanocomposite materials (HGNM), J. Mol. Catal. A-Chem., 261, 147-155, 2007
    [25]. A. H. Latham, M. J. Wilson, P. Schiffer, and M. E. Williams, TEM-Induced structural evolution in amorphous Fe oxide nanoparticles, J. Am. Chem. Soc., 128, 12632-12633, 2006
    [26]. M. S. Niasari, F. Davar, and M. Mazaheri, Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis(salicylidiminato)manganese(II)] complex, Polyhedron, 27, 3467-3471, 2008
    [27]. N. R. Jana, Y. Chen, and X. Peng, Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach, Chem. Mater., 16, 3931-3935, 2004
    [28]. A. C. S. Samita, K. Hyzer, J. A. Schlueter, C. J. Qin, J. S. Jiang, S. D. Bader, and X. M. Lin, Ligand effect on the growth and the digestion of Co nanocrystals, J. Am. Chem. Soc., 127, 4126-4127, 2005
    [29]. Y. Li, M. Afzaal, and P. O’Brien, The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility, J. Mater. Chem., 16, 2175-2180, 2006
    [30]. J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, and T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater., 3, 891-895, 2004
    [31]. A. H. Latham, and M. E. Williams, Controlling transport and chemical functionality of magnetic nanoparticles, Accounts Chem. Res., 41, 411-420, 2008
    [32]. S. Gibaud, and D. Attivi, Microemulsions for oral administration and their therapeutic applications, Expert. Opin. Drug Deliv., 9, 937-951, 2012
    [33]. R. B. Patel, J. R. Parikh, K. K. Bhatt, A. J. Kundawala, and M. R. Patel, Microemulsions: as novel drug delivery vehicle, Pharma. Rev., 5, 2007
    [34]. X. Wang, J. Zhuang, Q. Peng, and Y. Li, A general strategy for nanocrystal synthesis, Nature, 437, 121-124, 2005
    [35]. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, and Y. Li, Monodisperse magnetic single-crystal ferrite microspheres, Angew. Chem., 117, 2842-2845, 2005
    [36]. R. A. Sperling, and W. J. Parak, Surface modification, functionalization and biocojugation of colloidal inorganic nanoparticles, Phil. Trans. R. Soc. A, 368, 1333-1383, 2010
    [37]. J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, and J. Hubalek, Magenetic nanoparticles and targeted drug delivering, Pharm. Res., 62, 144-149, 2010
    [38]. M. A. Perazella, Tissue deposition of gadolinium and development of NSF: a convergence of factors, Semin. Dialysis, 21, 150-154, 2008
    [39]. E. J. Cha, E. S. Jang, I. C. Sun, I. J. Lee, J. H. Ko, Y. I. Kim, I. C. Kwon, K. Kim, and C. H. Ahn, Development of MRI/NIRF ‘activatable’ multimodal imaging probe based on iron oxide nanoparticles, J. Contral Release, 155, 152-158, 2011
    [40]. A. Jordan, P. Wust, H. Fähling, W. John, A. Hinz, and R. Felix, Inductive heating of ferromagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia, Int. J. Hyperthermia, 9, 51-68, 1993
    [41]. H. D. Suit, and M. Shwayder, hyperthermia: potential as an anti-tumor agent, Cancer, 34, 122-129, 1974
    [42]. Wayne state university, physics department, Gavin Lawes Research Group

    [43]. J. P. Chen, and A. S. Hoffman, Affinity precipitation separation of human immunogammaglobulin by a poly(N-isopropylacrylamide)-protein A conjugate, Biomaterials, 11, 631-634, 1990
    [44]. P. C. Lin, P. H. Chou, S. H. Chen, H. K. Liao, K. Y. Wang, Y. J. Chen, and C. C. Lin, Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma, Small, 2, 485-489, 2006
    [45]. G. Köhler, and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 256, 495-497, 1975
    [46]. M. W. Steward, Antibodies: their structure and function, Chapman and Hall Ltd, 1984
    [47]. Purves et al., Life The science of biology 4th edition
    [48]. P. Marchetii, Advanced glycation end products (AGEs) and their receptors (RAGEs) in diabetic vascular disease, Medicographia, 31, 257-265, 2009
    [49]. S. J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, and T. Hyeon, Synthesis and magnetic studies of uniform iron nanorods and nanospheres, J. Am. Chem. Soc., 122, 8581-8582, 2000
    [50]. M. Y. Hua, H. W. Yang, C. K. Chuang, R. Y. Tsai, W. J. Chen, K. L. Chuang, Y. H. Chang, H. C. Chuang, ang S. T. Pang, Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer, Biomaterials, 31, 7355-7363, 2010
    [51]. Z. A. Lin, J. N. Zheng, F. Lin, L. Zhang, Z. Cai, and G. N. Chen, Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins, J. Mater. Chem., 21, 518-524, 2011
    [52]. S. P. Chen, X. D. Yu, J. J. Xu, and, H. Y. Chen, Gold nanoparticles-coated magnetic microspheres as affinity matrix for detection of hemoglobin A1c in blood by microfluidic immunoassay, Biosensors and Bioelectronics, 26, 4779-4784, 2011
    [53]. N. Wangoo, J. Kaushal, K. K. Bhasin, S. K. Metha, and C. R. Suri, Zeta potential based colorimetric immunoassay for the direct detection of diabetic marker HbA1c using gold nanoprobes, Chem. Commun., 46, 5755-5757, 2010
    [54]. E. V. Shevchenko, M. I. Bondnarchuk, M. V. Kovalenko, D. V. Talapin, R. K. Smith, S. S. Aloni, W. Heiss, and A. P. Alivisatos, Gold/iron oxide core/hollow-shell nanoparticles, Adv. Mater., 20, 4323-4329, 2008
    [55]. M. Khajehpour, J. L. Dashnau, J. M. Vanderkooi, Infrared spectroscopy used to evaluate glycosylation of protein, Anal. Biochem., 348, 40-48, 2006
    [56]. J. Guo, S. Uppai, L. M. Easthon, T. C. Mueser and W. P. Griffith, Complete sequence determination of hemoglobin from endangered feline species using a combined ESI-MS and X-ray crystallography approach, Int. J. Mass. Spectrom., 312, 70-77, 2012

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE