| 研究生: |
官佳靜 Kuan, Jia-Jing |
|---|---|
| 論文名稱: |
茶葉真菌菌相多源基因體分析和潛在有益菌研究 Deciphering fungal community in tea leaves via metagenomics and discovering potential beneficial species |
| 指導教授: |
蔣鎮宇
Chiang, Tzen-yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 中國茶 、茶葉製程 、真菌 、多源基因體學 、麴黴菌 |
| 外文關鍵詞: | Chinese tea, tea manufacturing, fungi, metagenomics, Aspergillus |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
茶飲料在全世界廣受消費者喜愛。以發酵程度分成不發酵、部分發酵、全發酵與後發酵茶,不同發酵程度的茶葉具有獨特的風味和口感,而影響茶葉品質的原因繁多,製作過程、氣候地理環境因素、茶樹品種等。後發酵茶因製作過程中經過微生物發酵(渥堆)而產生獨特風味,然而微生物在部分發酵與全發酵茶的製茶步驟影響的研究相對較少。本實驗的茶葉製程研究取樣自阿里山石棹茶園,而茶葉產品的真菌相研究則購自市面產品。本研究採用多源基因體學方法了解茶葉真菌相,較傳統培養法可呈現更完整的菌相組成。結果顯示,真菌物種數與多樣性從原料、萎凋至發酵步驟逐漸增加。主成份分析發現部分發酵與全發酵呈現兩個不同的真菌變動趨勢,且在萎凋步驟就已經出現顯著差異。比較製程各階段的真菌相發現,各階段共有的真菌 OTU 有193種,占總菌相比例達到97%,顯現萎凋和發酵步驟的優勢菌種為原本就存在於茶葉上的真菌。在茶葉成品中的真菌菌相在各樣本間差異大,真菌分佈與茶葉發酵程度關聯性低。而產地對於原料上真菌的影響可能也在殺菁後與成品產生區隔。本研究針對茶葉中的有益成分茶黃素、GABA與洛伐他丁 (Lovastatin),將茶葉上與其生合成相關的真菌菌種視為潛在的有益真菌。結果顯示潛在有益菌集中在麴黴菌屬 (Aspergillus),主要出現在全發酵茶與後發酵茶中。綜合以上發現,參與茶葉製程萎凋與發酵步驟的真菌多數來自原料,在茶菁發酵後到成品的過程真菌種類大幅降低,而全發酵與後發酵茶可能含有更多能合成有益成份的真菌。
Tea is one of the most popular beverages consumed in the world and its biological activities and health benefits have been widely explored. According to the extent of fermentation, tea can be categorized to four groups, namely non-fermented, partially-fermented, completely-fermented, and post-fermented. Many factors, including manufacturing, climate, geography and tea races, affect the tea quality, whereas the role of microbiomes remains unclear. Here, the microbial communities in tea leaves were investigated by amplicon-based metagenomics. Multiple rarefactions showed a trend with species richness and Shannon diversity increasing from raw material, withered semi-product, to fermented semi-products. By using principal component analyses (PCA), I found that partially- and completely-fermented tea showed distinct microbial communities at the withering step. In total 193 OTU were shared among the tea manufacturing steps, counting for at least 97% of the relative abundance across all steps, indicating that the fungi involved in tea-making process mostly originated from tea leaves. Hierarchical clustering analyses suggested that the composition of tea microbiomes is related to the local flora. Interestingly, several Aspergillus species that may produce beneficial metabolites, including theaflavin, GABA, and lovastation, were found in tea leaves. Aspergillus spp were most abundant in the post-fermented tea.
Abdulkadir, E., Taghreid, A. L., & Saif, A. B. (1999). Fungi associated with black tea and tea quality in the Sultanate of Oman. Mycopathologia, 145, 89-93.
Ahmad, N., & Mukhtar, H. (1999). Green tea polyphenols and cancer: Biologic mechanisms and practical implications. Nutrition Reviews, 57, 78-83.
Alegría, Á., Szczesny, P., Mayo, B., Bardowski, J., & Kowalczyk, M. (2012). Biodiversity in oscypek, a traditional polish cheese, determined by culture-dependent and -Independent approaches. Applied and Environmental Microbiology, 78, 1890-1898.
Angayarkanni, J., Palaniswamy, M., Murugesan, S., & Swaminathan, K. (2002). Improvement of tea leaves fermentation with Aspergillus spp. pectinase. Journal of Bioscience and Bioengineering, 94, 299-303.
Ansari, H., Duncan, D., & Stevens, L. (1983). Comparative study of the neutral proteinases from fungi and actinomycetes using polyacrylamide gel electrophoresis. Microbios, 40, 173-179.
Arndt, D., Xia, J., Liu, Y., Zhou, Y., Guo, A. C., Cruz, J. A., et al. (2012). METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic acids researchgks497.
Askenazi, M., Driggers, E. M., Holtzman, D. A., Norman, T. C., Iverson, S., Zimmer, D. P., et al. (2003). Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nature biotechnology, 21, 150-156.
Awad, A. B., & Fink, C. S. (2000). Phytosterols as Anticancer Dietary Components: Evidence and Mechanism of Action. The Journal of Nutrition, 130, 2127-2130.
Balentine, D. A., Wiseman, S. A., & Bouwens, L. C. (1997). The chemistry of tea flavonoids. Critical Reviews in Food Science and Nutrition, 37, 693-704.
Bokuchava, M. A., Skobeleva, N. I., & Sanderson, G. W. (1980). The biochemistry and technology of tea manufacture. C R C Critical Reviews in Food Science and Nutrition, 12, 303-370.
Bokulich, N. A., Thorngate, J. H., Richardson, P. M., & Mills, D. A. (2014). Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proceedings of the National Academy of Sciences, 111, E139-E148.
Bushman, J. L. (1998). Green tea and cancer in humans: A review of the literature. Nutrition and Cancer, 31, 151-159.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature methods, 7, 335-336.
Chen, K. K., Zhang, X. L., Zhu, H. T., Yang, C. R., & Zhang, Y. J. (2008). The effects of Aspergillus on the post-fermentative process of Pu-er tea. Acta Botanica Yunnanica, 30, 624-628.
Ciccarelli, F. D., Doerks, T., Von Mering, C., Creevey, C. J., Snel, B., & Bork, P. (2006). Toward automatic reconstruction of a highly resolved tree of life. Science, 311, 1283-1287.
Cooper, R., Morré, D. J., & Morré, D. M. (2005). Medicinal benefits of green tea: Part I. Review of noncancer health benefits. Journal of Alternative & Complementary Medicine, 11, 521-528.
Cowan, D., Meyer, Q., Stafford, W., Muyanga, S., Cameron, R., & Wittwer, P. (2005). Metagenomic gene discovery: past, present and future. Trends in Biotechnology, 23, 321-329.
Cristobal Noe, A., Mario, C., Raul, R., Gerardo, G. S., Ascencion, R. C., & Christopher, A. (2004). Catechin degradation by several fungal strains isolated from Mexican desert. Journal of microbiology and biotechnology, 14, 426-429.
Devarumath, R., Nandy, S., Rani, V., Marimuthu, S., Muraleedharan, N., & Raina, S. (2002). RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C. assamica ssp. assamica (Assam-India type). Plant Cell Reports, 21, 166-173.
Dhakal, R., Bajpai, V. K., & Baek, K.-H. (2012). Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Brazilian Journal of Microbiology, 43, 1230-1241.
Duffy, S. J., Keaney Jr, J. F., Holbrook, M., Gokce, N., Swerdloff, P. L., Frei, B., et al. (2001). Short- and Long-Term Black Tea Consumption Reverses Endothelial Dysfunction in Patients With Coronary Artery Disease. Circulation, 104, 151-156.
Eden, T. (1958). The development of tea culture. Tea Longman, London1-4.
Fazekas, A. J., Burgess, K. S., Kesanakurti, P. R., Graham, S. W., Newmaster, S. G., Husband, B. C., et al. (2008). Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE, 3, e2802.
Ferrer, M., Soliveri, J., Plou, F. J., López-Cortés, N., Reyes-Duarte, D., Christensen, M., et al. (2005). Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties. Enzyme and Microbial Technology, 36, 391-398.
Fujiki, H., Suganuma, M., Okabe, S., Komori, A., Sueoka, E., Sueoka, N., et al. (1996). Japanese green tea as a cancer preventive in humans. Nutrition Reviews, 54, S67-S70.
Gong, J., Zhou, H., Zhang, X., Song, S., & An, W. (2005). Changes of chemical components in pu'er tea produced by solid state fermentation of sundried green tea. Journal of Tea Science, 4, 010.
Handelsman, J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 68, 669-685.
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 5, R245-R249.
Hawkins, A. R., Gurr, S. J., Montague, P., & Kinghorn, J. R. (1989). Nucleotide sequence and regulation of expression of the Aspergillus nidulans gdhA gene encoding NADP dependent glutamate dehydrogenase. Molecular and General Genetics MGG, 218, 105-111.
Hirsch, P. R., Mauchline, T. H., & Clark, I. M. (2010). Culture-independent molecular techniques for soil microbial ecology. Soil Biology and Biochemistry, 42, 878-887.
Huang, C. L., Jian, F. Y., Huang, H. J., Chang, W. C., Wu, W. L., Hwang, C. C., et al. (2014a). Deciphering mycorrhizal fungi in cultivated Phalaenopsis microbiome with next-generation sequencing of multiple barcodes. Fungal Diversity, 66, 77-88.
Huang, Q. G., Zhang, L. Z., & Tan, X. D. (2014b). Biotransformation of tea polyphenols by fungi isolated from dark tea. Guangdong Agricultural Sciences, 19, 021.
Hughes, B. D. (1978). The influence of factors other than pollution on the value of Shannon's diversity index for benthic macro-invertebrates in streams. Water Research, 12, 359-364.
Humblot, C., & Guyot, J. P. (2009). Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries. Applied and Environmental Microbiology, 75, 4354-4361.
Jiang, H. Y., Shii, T., Matsuo, Y., Tanaka, T., Jiang, Z. H., & Kouno, I. (2011). A new catechin oxidation product and polymeric polyphenols of post-fermented tea. Food Chemistry, 129, 830-836.
Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F., Bahram, M., et al. (2013). Towards a unified paradigm for sequence‐based identification of fungi. Molecular Ecology, 22, 5271-5277.
Kaeberlein, T., Lewis, K., & Epstein, S. (2002). Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science, 296, 1127-1129.
Kohlmeier, L., Weterings, K. G., Steck, S., & Kok, F. J. (1997). Tea and cancer prevention: an evaluation of the epidemiologic literature. Nutrition and Cancer, 27, 1-13.
Kondo, K. (1975). Cytological studies in cultivated species of Camellia. Diss Abstr Int, B, 36, 2595-2596.
Kubicek, C., Hampel, W., & Röhr, M. (1979). Manganese deficiency leads to elevated amino acid pools in citric acid accumulating Aspergillus niger. Archives of Microbiology, 123, 73-79.
López, J. C., Pérez, J. S., Sevilla, J. F., Porcel, E. R., & Chisti, Y. (2005). Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. Journal of Biotechnology, 116, 61-77.
Li, D., & Qi, G. n. (2010). Identification of fungus population in pile fermentation process of tibetan tea. Guizhou Agricultural Sciences155-158.
Liao, S., Kao, Y. H., & Hiipakka, R. A. (2001) Green tea: Biochemical and biological basis for health benefits. Vol. 62. Vitamins and Hormones (pp. 1-94).
Ling, W. H., & Jones, P. J. (1995). Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sciences, 57, 195-206.
Longxin, L., Xiaochong, W., Yuliang, D., & Shangwen, F. (1998). Variations of main biochemical components and their relations to quality formation during pile-fermentation process of Yunnan puer tea. Journal of Tea Science, 1, 008.
Lu, C.-H., & Hwang, L. S. (2008). Polyphenol contents of Pu-Erh teas and their abilities to inhibit cholesterol biosynthesis in Hep G2 cell line. Food Chemistry, 111, 67-71.
Ma, H., Shi, Q. Y., & Qian, H. (2012). Summarization on effects of fixation technology on quality of green tea. journal of Henan Agricultural Sciences, 41, 1-5.
Ma, Y., & Zhao, M. (2011). The isolation and identification of jinhua fungi in pu-erh tea samples. TEA COMMUNICATION.
Marimuthu, S., Senthilkumar, R., Balasubramanian, S., Rajkumar, R., & Christie, S. (2000). Effect of addition of biopectinase on biochemical composition of CTC black tea. Recent Adv Plant Crops Res, 28, 265-269.
Maron, D. J., Lu, G. P., Cai, N. S., Wu, Z. G., Li, Y. H., Chen, H., et al. (2003). Cholesterol-lowering effect of a theaflavin-enriched green tea extract: a randomized controlled trial. Archives of internal medicine, 163, 1448-1453.
Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2013). Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS ONE, 8, e69371.
Meyer, P., Du Preez, J., & Kilian, S. (1992). Chemostat cultivation of Candida blankii on sugar cane bagasse hemicellulose hydrolysate. Biotechnology and bioengineering, 40, 353-358.
Middleton, E., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological reviews, 52, 673-751.
Moline, J., Bukharovich, I., Wolff, M., & Phillips, R. (2000). Dietary flavonoids and hypertension: is there a link? Medical hypotheses, 55, 306-309.
Mukhtar, H., & Ahmad, N. (2000). Tea polyphenols: prevention of cancer and optimizing health. The American journal of clinical nutrition, 71, 1698s-1702s.
Murugesan, G. S., Angayarkanni, J., & Swaminathan, K. (2002). Effect of tea fungal enzymes on the quality of black tea. Food Chemistry, 79, 411-417.
Nijveldt, R. J., Van Nood, E., Van Hoorn, D. E., Boelens, P., Van Norren, K., & Van Leeuwen, P. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. The American journal of clinical nutrition, 74, 418-425.
Riemersma, R., Rice Evans, C., Tyrrell, R., Clifford, M., & Lean, M. (2001). Tea flavonoids and cardiovascular health. Qjm, 94, 277-282.
Roh, S. W., Kim, K. H., Nam, Y. D., Chang, H. W., Park, E. J., & Bae, J. W. (2010). Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. The ISME Journal, 4, 1-16.
Samiee, S. M., Moazami, N., Haghighi, S., Aziz Mohseni, F., Mirdamadi, S., & Bakhtiari, M. R. (2003). Screening of lovastatin production by filamentous fungi. Iranian Biomedical Journal, 7, 29-33.
Senthilkumar, R., Swaminathan, K., Marimuthu, S., & Rajkumar, R. (2000). Microbial enzymes for processing of tea leaf. Rec Adv Plant Crop Res273-276.
Shannon, C. E. (2001). A mathematical theory of communication. SIGMOBILE Mob Comput Commun Rev, 5, 3-55.
Studio tac creative. (2014). 日本茶事典. 台北市: 日月文化出版有限公司.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30, 2725-2729.
Tanaka, T., Matsuo, Y., & Kouno, I. (2010). Chemistry of secondary polyphenols produced during processing of tea and selected foods. International Journal of Molecular Sciences, 11, 14-40.
Tanaka, T., Umeki, H., Nagai, S., Shii, T., Matsuo, Y., & Kouno, I. (2012). Transformation of tea catechins and flavonoid glycosides by treatment with Japanese post-fermented tea acetone powder. Food Chemistry, 134, 276-281.
Tian, J., Zhu, Z., Wu, B., Wang, L., & Liu, X. (2013). Bacterial and fungal communities in pu'er tea samples of different ages. Journal Of Food Science, 78, M1249-M1256.
Wang, Z. (1991a). Discussion on the mechanism of quality and flavour formation of dark green tea. Journal of Tea Science.
Wang, Z. (1991b). Dynamics of polyphenols and carbohydrates during the primary processing of dark green tea. Journal of Tea ScienceS1.
Wiedmeier, R. D., Arambel, M. J., & Walters, J. L. (1987). Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility. Journal of Dairy Science, 70, 2063-2068.
Xie, L. h., Xu, Y. p., & Wang, G. h. (2006). Varieties of tea leaves and tea growth period affect the endogenous fungi. Journal of Fungal Research.
Xu, A., Wang, Y., Wen, J., Liu, P., Liu, Z., & Li, Z. (2011). Fungal community associated with fermentation and storage of Fuzhuan brick-tea. International Journal of Food Microbiology, 146, 14-22.
Yamanishi, T. (1981). 茶的風味與生理效果. The chemical society of Japan, 29, 340-344.
Yang, F. l., Deng, F. m., Zhao, L. y., & Xia, Y. s. (2006). Development of black tea microbiology. Journal of Microbiology, 26, 81-84.
Yin, J. f., Xu, Y. q., Yuam, H. b., & Yu, S. p. (2009). Dynamic change of main biochemical components of premium green tea fresh leaves during spreading. Journal of Tea Science.
Zhang, Y., Skaar, I., Sulyok, M., Liu, X., Rao, M., & Taylor, J. W. (2016). The microbiome and metabolites in fermented pu-erh tea as revealed by high-throughput sequencing and quantitative multiplex metabolite analysis. PLoS ONE, 11, e0157847.
Zhao, Z.-J., Pan, Y.-Z., Liu, Q.-J., & Li, X.-H. (2013). Exposure assessment of lovastatin in Pu-erh tea. International Journal of Food Microbiology, 164, 26-31.
Zheng, P., Ye, F., Gao, S., & Wang, X. (2011). Effect of spreading time on aroma components in fresh tea leaves. Chinese Agricultural Science Bulletin, 27, 334-338.
Zhong, T., & Qi, G. n. (2010). Identification of fungal populations during the storage period of tbetan tea. Guizhou Agricultural Sciences.
尹軍. (2007). 名優绿茶鮮葉攤放過程主要化學成分變化規律及環境影響的研究. 茶葉科學.
池宗. (2005). 尋味中國茶. 台北市中山區: 積木文化.
陳習、石琳、李軍、鄭生與方世. (2011). 鮮葉攤放程度對綠茶品質及主要生化成分的影響. 茶葉通報80-84.
陳煥堂與林世煜. (2008). 台灣茶的第一堂課. 台北市松山區: 如果文化