| 研究生: |
莊翌宣 Zhuang, Yi-Xuan |
|---|---|
| 論文名稱: |
利用電弧製作模態場適配器以改善多模光纖雷射效率之研究 Improvement study of lasing efficiency in a multimode fiber resonator using arc-induced mode-field adaptation |
| 指導教授: |
蔡宗祐
Tsai, Tzong-Yow |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 模態場不匹配 、熱擴散纖核法 、載氫光纖 、全光纖雷射 |
| 外文關鍵詞: | Mode field mismatch, Thermally expanded core, H2-loaded fiber, all-fiber laser |
| 相關次數: | 點閱:54 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之主要研究目標為製作模態適配器以改善模態場不匹配所導致的能量損失,進而提升雷射架構的輸出效率。文中所探討的模態場不匹配光纖為10/125-08 SCF與20/125-08 SCF,兩光纖未經過改良前的穿透率大約落在70%左右,本文使用載氫光纖的技術將較小模態直徑的10/125-08 SCF內部填充載氫後搭配熱擴張纖核法,以電弧放電的方式對光纖進行逐次加熱,穿透率最高可提升至90.02%,且由於載氫提高了纖核內摻雜離子的擴散係數,與未使用載氫光纖進行實驗的結果相比約可縮短一半的加熱時間。文中由實驗數據估算出載氫光纖的擴散係數約為一般光纖的2.2倍。將製作的模態適配器實際放入雷射架構進行量測,雷射輸出能量約可提高25%,成功驗證了以載氫光纖結合熱擴張纖核法製作模態適配器的可行性。
The main purpose of this study is to improve the efficiency of the mode-field adapter between two mismatched fibers. The mode- field mismatched fibers discussed in this article are 10/125-08 SCF and 20/125-08 SCF. The transmission of two fibers before improvement is about 70%. By using the hydrogen-loading with a relatively smaller core and arc-induced thermally diffused expanded core method, the transmission can be increased to 90.02%. Due to the hydrogen loading, the diffusion coefficient of the dopants that define the core geometry is enhanced. The arc time can be shortened by about half compared with the result of the experiment without using the hydrogen-loaded fiber. It is estimated from the experimental data that the diffusion coefficient of the hydrogen-loaded fiber is about 2.2 times than that of the general optical fiber. When the produced modal adapter is actually put into a laser structure, the laser output energy can be increased by about 25%, which successfully verifies the feasibility of using this method to make a modal adapter.
1 A. L. Schawlow, and C. H. Townes, "Infrared and Optical Masers," Physical Review 112, 1940-1949 (1958).
2 T. H. Maiman, "Stimulated Optical Radiation in Ruby," Nature 187, 493 (1960).
3 J. Stone, and C. A. Burrus, "Neodymium‐doped silica lasers in end‐pumped fiber geometry," Applied Physics Letters 23, 388-389 (1973).
4 A. D. Yablon, and M. Sumetsky, "Optimal design of intermediate fibers," in Optical Fiber Communication Conference(Optical Society of America2007), p. OWI3.
5 B. Wang, and E. Mies, "Advanced topics on fusion splicing of specialty fibers and devices," in Passive Components and Fiber-based Devices IV(International Society for Optics and Photonics2007), p. 678130.
6 A. D. Yablon, and R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photonics Technology Letters 17, 118-120 (2004).
7 B. Wang, E. Mies, M. Minden, and A. Sanchez, "All-fiber 50 W coherently combined passive laser array," Optics letters 34, 863-865 (2009).
8 Y. e. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Optics express 12, 6088-6092 (2004).
9 T.-Y. Tsai, Y.-C. Fang, H.-M. Huang, H.-X. Tsao, and S.-T. Lin, "Saturable absorber Q-and gain-switched all-Yb 3+ all-fiber laser at 976 and 1064 nm," Optics express 18, 23523-23528 (2010).
10 D. Jin, R. Sun, S. Wei, J. Liu, and P. Wang, "Nanosecond Yb-doped monolithic dual-cavity laser oscillator with large core fiber," IEEE Photonics Technology Letters 27, 1477-1480 (2015).
11 D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," JOSA B 27, B63-B92 (2010).
12 J. P. Koplow, D. A. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Optics letters 25, 442-444 (2000).
13 M. E. Fermann, "Single-mode excitation of multimode fibers with ultrashort pulses," Optics Letters 23, 52-54 (1998).
14 C.-H. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, and K. Tankala, "Effectively single-mode chirally-coupled core fiber," in Advanced Solid-State Photonics(Optical Society of America2007), p. ME2.
15 T. A. Birks, and Y. W. Li, "The shape of fiber tapers," Journal of Lightwave Technology 10, 432-438 (1992).
16 K. Shiraishi, Y. Aizawa, and S. Kawakami, "Beam expanding fiber using thermal diffusion of the dopant," Journal of lightwave technology 8, 1151-1161 (1990).
17 M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, "Characteristics of thermally expanded core fiber," Journal of lightwave technology 14, 2209-2214 (1996).
18 K. Shiraishi, T. Yanagi, and S. Kawakami, "Light-propagation characteristics in thermally diffused expanded core fibers," Journal of lightwave technology 11, 1584-1591 (1993).
19 B. Wang, and E. Mies, "Review of fabrication techniques for fused fiber components for fiber lasers," in Fiber Lasers VI: Technology, Systems, and Applications(International Society for Optics and Photonics2009), p. 71950A.
20 T.-Y. Tsai, Z.-C. Lee, H.-X. Tsao, and S.-T. Lin, "Enhanced arc-induced core expansion for mode-field adaptation using a H 2-loaded fiber," OSA Continuum 2, 1358-1364 (2019).
21 R. Atkins, P. Lemaire, T. Erdogan, and V. Mizrahi, "Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses," Electronics Letters 29, 1234-1235 (1993).
22 A. Othonos, "Fiber bragg gratings," Review of scientific instruments 68, 4309-4341 (1997).
23 G. Kliros, and N. Tsironikos, "Variational analysis of propagation characteristics in thermally diffused expanded core fibers," Optik 116, 365-374 (2005).
24 M. Ratuszek, "Loss analysis of single mode telecommunication fiber thermally-diffused core areas," Optica Applicata 37, 279 (2007).
25 D. Marcuse, "Loss analysis of single‐mode fiber splices," Bell System Technical Journal 56, 703-718 (1977).