簡易檢索 / 詳目顯示

研究生: 鍾斐然
Chung, Fei-Jan
論文名稱: 含有側鏈共軛集團之光電高分子合成與性質鑑定
Synthesis and Characterization of Optoelectronic Polymers Containing Pendant Conjugated Moieties
指導教授: 吳文中
Wu, Wen-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 73
中文關鍵詞: 光電高分子側鏈共軛集團螢光
外文關鍵詞: optoelectronic polymers, pendant conjugated moieties, fluorescence
相關次數: 點閱:109下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從發現共軛高分子的導電性之後,便有大量研究應用於光電元件上,包含發光二極體、電晶體以及太陽能電池。近年來因為側鏈為共軛基團的非共軛高分子具有良好的溶解度和光電性質,所以也受到大量的注目。共軛高分子中,導入電子施體可以增強對於電洞的傳遞速率及提高HOMO能階,進而降低電洞由電極注入的能障;導入電子受體可以降低LUMO能階,提高電子注入能力。故因應不同材料的需求,可以調整電子施體/受體的比例來達到所需。
    此論文合成一系列在側鏈上帶有不同比例電子施體/受體的共聚高分子,並鑑定其光電特性以探討側鏈共軛集團特性與含量對共聚高分子性質的影響。電子施體的部分是使用常被拿來做為光電材料的pyrene,它具有特殊的螢光性質,常被用來設計螢光感測器;電子受體使用2,1,3-benzothiadiazole (BT),它的電子親和力很高,所以常被拿來當作電子傳遞材料。論文中使用Suzuki反應合成出施體和受體單體,再利用自由基聚合分別合成了三種Py含量不同的P系列共聚高分子、三種BT含量不同的B系列共聚高分子以及含有三種不同Pyrene/BT比例的PB系列共聚高分子,接著把三個系列的高分子做了光物理性質以及電化學性質的檢測。
    由UV吸收可看到P系列和B系列的吸收度都因Pyrene和BT的含量增加而有增加的趨勢;PB系列則可明顯看到因Pyrene及BT含量不同造成的吸收值變化。由PL可看到P系列因為Py含量增加而有明顯的monomer轉成excimer訊號的變化;B系列則因為分子內電荷轉移的影響,所以BT含量愈高,溶液螢光強度下降的情形;PB系列則可發現BT含量較多的高分子溶液螢光強度下降的情形。CV圖則顯示P系列中P1因Pyrene含量太少導致無氧化峰,不過由P2及P3則可看到因Pyrene增加導致的HOMO能階的提升;B系列則可能因為含量差異性不大使得無明顯的LUMO能階變化;PB系列無發現明顯的規則性可能是由於Pyrene及BT含量不夠多導致。

    Since the discovery the conductivity of conjugated polymers, more and more researches have been dedicated to their applications in opto-electronic devices, including light emitting diodes (LEDs), transistors, and solar cells. Recently, because of good solubility and some special properties, non-conjugated polymers with conjugated groups as side chains attract lots of attentions. In conjugated polymers, the hole mobility can be enhanced and the HOMO level could be raised by incorporating with electron donor. Furthermore, it can lower the hole injection barrier from the electrode so that the ability of hole injection increases. Incorporating the electron acceptor, on the other hand, can lower the LUMO level and increase the ability of electron injection. So the desired optoelectronic properties might be achieved through adjusting the ratio of donors to acceptors.
    In this study, we report the synthesis of polymers containing different ratio of donor to acceptor in the side chains, and explore the opto-electronic properties in order to discuss the effect of the properties and content of side chain groups on copolymer properties. We use pyrene, which are often applied to electro-optical materials, as electron donor. It contains unique fluorescence properties, which can be utilized to design various types of fluorescence sensors. Furthermore, we use 2,1,3-benzothiadiazole as electron acceptor because it contains high electron affinity, and it is often regarded as electron transport materials. Herein, two monomers containing donor or acceptor are prepared by Suzuki coupling reaction, and copolymers with conjugated pendants are prepared by free radical polymerization. P or B series copolymers are composed of styrene and pyrene or 2,1,3-benzothiadiazole, respectively, with three different ratios of styrene to pyrene (or 2,1,3-benzothiadiazole). PB series copolymers are composed of styrene, pyrene and 2,1,3-benzothiadiazole with contain three different ratios of pyrene and 2,1,3-benzothiadiazole. Finally, photophysical and electrochemical properties of these three series of copolymers are characterized to investigate the structure-property relationship.
    The absorbance increases as the content of pyrene and 2,1,3-benzothiadiazole in P and B series increase, and the relative absorbance of respective characteristic peaks is in good agreement with the ratio of donor to acceptor in PB series. From the fluorescence spectra of P series, the monomer band changes to excimer band as the pyrene content rises. In B series, the fluorescence intensity decreases as BT content increases due to the intramolecular charge transfer. In PB series, copolymers of high BT content show relatively low fluorescence intensity. In cyclic voltammograms of P1, because pyrene content is quite low, it shows no oxidation current peak. But in P2 and P3, the higher pyrene content leads to the enhanced HOMO level. In B series, there are no obvious differences in the LUMO level, probably due to the small difference among their BT contents. No regularity in PB series, and we contribute it to the small content of pyrene and BT.

    摘要 I Abstract II 誌謝 IV 目錄 VI 表目錄 VIII 圖目錄 IX 流程目錄 XII 第一章、緒論 1 1-1 研究背景與文獻回顧 1 1-1-1 導電高分子 1 1-1-2 導電高分子的螢光性質 4 1-1-2-1 理論 4 1-1-2-2 高分子發光二極體 10 1-1-3導電高分子的導電性質 17 1-1-3-1 理論 17 1-1-3-2 太陽能電池 18 1-1-3-3 記憶體裝置 22 1-2 研究動機 29 第二章、實驗部分 32 2-1 實驗藥品與材料 32 2-2 實驗裝置 32 2-3 檢測儀器 33 2-4 合成部分 36 2-4-1 單體合成 36 2-4-1-1 4-(1-Pyrenyl)styrene合成 36 2-4-1-2 4-(5-2,1,3-Benzothiadiazolyl)styrene合成 37 2-4-2 高分子合成 38 2-4-2-1 Poly[styrene-co-4-(1-Pyrenyl)styrene] (P系列)之合成 38 2-4-2-2 Poly[styrene-co-4-(5-2,1,3-Benzothiadiazolyl)styrene] (B系列) 之合成 38 2-4-2-3 Poly(styrene-co-[4-(1-Pyrenyl)styrene]-co-[4-(5-2,1,3-Benzothiadiazolyl)styrene]) (PB系列)之合成 39 第三章、結果與討論 41 3-1 單體合成鑑定 42 3-1-1 St-Py 42 3-1-2 St-BT 43 3-2 高分子合成鑑定 43 3-2-1 P系列 43 3-2-2 B系列 47 3-2-3 PB系列 50 3-3 光學性質 - UV吸收光譜 53 3-4 光學性質 - PL螢光光譜 54 3-5 電化學性質 61 第四章、結論與未來工作 66 第五章、參考文獻 68

    (1) Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Journal of the Chemical Society, Chemical Communications 1977, 578.
    (2) Shirakawa, H.; Ito, T.; Ikeda, S. Die Makromolekulare Chemie 1978, 179, 1565.
    (3) Cai, Z.; Martin, C. R. Journal of the American Chemical Society 1989, 111, 4138.
    (4) Burroughes, J.; Bradley, D.; Brown, A.; Marks, R.; Mackay, K.; Friend, R.; Burns, P.; Holmes, A. nature 1990, 347, 539.
    (5) Martin, C. R. Accounts of chemical research 1995, 28, 61.
    (6) Collins, G. E.; Buckley, L. J. Synthetic Metals 1996, 78, 93.
    (7) Simpson, J. H.; Egger, N.; Masse, M. A.; Rice, D. M.; Karasz, F. E. Journal of Polymer Science Part B: Polymer Physics 1990, 28, 1859.
    (8) Andersson, M.; Yu, G.; Heeger, A. Synthetic metals 1997, 85, 1275.
    (9) Swanson, L.; Shinar, J.; Brown, A.; Bradley, D. C.; Friend, R.; Burn, P.; Kraft, A.; Holmes, A. Physical Review B 1992, 46, 15072.
    (10) Scott, J.; Kaufman, J.; Brock, P.; DiPietro, R.; Salem, J.; Goitia, J. Journal of Applied Physics 1996, 79, 2745.
    (11) Nguyen, T.-Q.; Martini, I. B.; Liu, J.; Schwartz, B. J. The Journal of Physical Chemistry B 2000, 104, 237.
    (12) Pei, Q.; Yang, Y. Journal of the American Chemical Society 1996, 118, 7416.
    (13) Yu, W. L.; Pei, J.; Huang, W.; Heeger, A. Advanced Materials 2000, 12, 828.
    (14) Fukuda, M.; Sawada, K.; Yoshino, K. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31, 2465.
    (15) Liu, C.-L.; Hsu, J.-C.; Chen, W.-C.; Sugiyama, K.; Hirao, A. ACS applied materials & interfaces 2009, 1, 1974.
    (16) Fang, Y.-K.; Liu, C.-L.; Chen, W.-C. Journal of Materials Chemistry 2011, 21, 4778.
    (17) Zhang, B.; Chen, Y.; Zhang, Y.; Chen, X.; Chi, Z.; Yang, J.; Ou, J.; Zhang, M. Q.; Li, D.; Wang, D. Physical Chemistry Chemical Physics 2012, 14, 4640.
    (18) Oyaizu, K.; Choi, W.; Nishide, H. Polymers for Advanced Technologies 2011, 22, 1242.
    (19) Liu, S. J.; Wang, P.; Zhao, Q.; Yang, H. Y.; Wong, J.; Sun, H. B.; Dong, X. C.; Lin, W. P.; Huang, W. Advanced Materials 2012, 24, 2901.
    (20) Li, H.; Li, N.; Sun, R.; Gu, H.; Ge, J.; Lu, J.; Xu, Q.; Xia, X.; Wang, L. The Journal of Physical Chemistry C 2011, 115, 8288.
    (21) Beaupré, S.; Boudreault, P.-L. T.; Leclerc, M. Advanced Materials 2010, 22, E6.
    (22) Thompson, B. C.; Madrigal, L. G.; Pinto, M. R.; Kang, T.-S.; Schanze, K. S.; Reynolds, J. R. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43, 1417.
    (23) Grimsdale, A. C.; Leok Chan, K.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Chemical reviews 2009, 109, 897.
    (24) Thompson, B. C.; Madrigal, L. G.; Pinto, M. R.; Kang, T. S.; Schanze, K. S.; Reynolds, J. R. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43, 1417.
    (25) Shim, H. K.; Yoon, C. B.; Ahn, T.; Hwang, D. H.; Zyung, T. Synthetic Metals 1999, 101, 134.
    (26) Kim, I. T.; Lee, S. W.; Kim, S. Y.; Lee, J. S.; Park, G. B.; Lee, S. H.; Kang, S. K.; Kang, J.-G.; Park, C.; Jin, S.-H. Synthetic Metals 2006, 156, 38.
    (27) Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Advanced Functional Materials 2003, 13, 85.
    (28) Gebeyehu, D.; Maennig, B.; Drechsel, J.; Leo, K.; Pfeiffer, M. Solar Energy Materials and Solar Cells 2003, 79, 81.
    (29) Benson-Smith, J. J.; Goris, L.; Vandewal, K.; Haenen, K.; Manca, J. V.; Vanderzande, D.; Bradley, D. D. C.; Nelson, J. Advanced Functional Materials 2007, 17, 451.
    (30) Loi, M. A.; Toffanin, S.; Muccini, M.; Forster, M.; Scherf, U.; Scharber, M. Advanced Functional Materials 2007, 17, 2111.
    (31) Wang, D. H.; Kim do, Y.; Choi, K. W.; Seo, J. H.; Im, S. H.; Park, J. H.; Park, O. O.; Heeger, A. J. Angewandte Chemie 2011, 50, 5519.
    (32) Veldman, D.; Meskers, S. C. J.; Janssen, R. A. J. Advanced Functional Materials 2009, 19, 1939.
    (33) Zhang, Q.; Cirpan, A.; Russell, T. P.; Emrick, T. Macromolecules 2009, 42, 1079.
    (34) Yang, Y.; Ouyang, J.; Ma, L.; Tseng, R. J. H.; Chu, C. W. Advanced Functional Materials 2006, 16, 1001.
    (35) Ling, Q.-D.; Liaw, D.-J.; Zhu, C.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. Progress in Polymer Science 2008, 33, 917.
    (36) Ling, Q.-D.; Liaw, D.-J.; Teo, E. Y.-H.; Zhu, C.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. Polymer 2007, 48, 5182.
    (37) Zhuang, X.-D.; Chen, Y.; Li, B.-X.; Ma, D.-G.; Zhang, B.; Li, Y. Chemistry of Materials 2010, 22, 4455.
    (38) Ling, Q.-D.; Song, Y.; Lim, S.-L.; Teo, E. Y.-H.; Tan, Y.-P.; Zhu, C.; Chan, D. S. H.; Kwong, D.-L.; Kang, E.-T.; Neoh, K.-G. Angewandte Chemie International Edition 2006, 45, 2947.
    (39) Liu, J.; Yin, Z.; Cao, X.; Zhao, F.; Lin, A.; Xie, L.; Fan, Q.; Boey, F.; Zhang, H.; Huang, W. ACS Nano 2010, 4, 3987.
    (40) Chu, C. W.; Ouyang, J.; Tseng, J. H.; Yang, Y. Advanced Materials 2005, 17, 1440.
    (41) Xia, L.; Wei, Z.; Wan, M. Journal of colloid and interface science 2010, 341, 1.
    (42) Feng, X.; Liu, L.; Wang, S.; Zhu, D. Chemical Society Reviews 2010, 39, 2411.
    (43) Thomas, S. W.; Joly, G. D.; Swager, T. M. Chemical reviews 2007, 107, 1339.
    (44) Santra, S.; Dutta, D.; Walter, G. A.; Moudgil, B. M. Technology in cancer research & treatment 2005, 4, 593.
    (45) Samuel, I. D. W.; Rumbles, G.; Collison, C. J. Physical Review B 1995, 52, R11573.
    (46) Clarke, T. M.; Durrant, J. R. Chemical reviews 2010, 110, 6736.
    (47) Tvingstedt, K.; Vandewal, K.; Gadisa, A.; Zhang, F.; Manca, J.; Inganäs, O. Journal of the American Chemical Society 2009, 131, 11819.
    (48) Kitamura, C.; Tanaka, S.; Yamashita, Y. Chemistry of Materials 1996, 8, 570.
    (49) Tanaka, S.; Yamashita, Y. Synthetic Metals 1995, 69, 599.
    (50) Thompson, B. C.; Madrigal, L. G.; Pinto, M. R.; Kang, T.-S.; Schanze, K. S.; Reynolds, J. R. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43, 1417.
    (51) Epstein, A. J.; Blatchford, J. W.; Wang, Y. Z.; Jessen, S. W.; Gebler, D. D.; Lin, L. B.; Gustafson, T. L.; Wang, H. L.; Park, Y. W.; Swager, T. M.; MacDiarmid, A. G. Synthetic Metals 1996, 78, 253.
    (52) Fu, D.-K.; Xu, B.; Swager, T. M. Tetrahedron 1997, 53, 15487.
    (53) Bangcuyo, C. G.; Evans, U.; Myrick, M. L.; Bunz, U. H. F. Macromolecules 2001, 34, 7592.
    (54) Morikita, T.; Yamaguchi, I.; Yamamoto, T. Advanced Materials 2001, 13, 1862.
    (55) Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K. Applied Physics Letters 1994, 64, 815.
    (56) Vijayakumar, C.; Sugiyasu, K.; Takeuchi, M. Chemical Science 2011, 2, 291.
    (57) Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nature materials 2005, 4, 864.
    (58) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Advanced Functional Materials 2005, 15, 1617.
    (59) Liang, Y.; Wu, Y.; Feng, D.; Tsai, S.-T.; Son, H.-J.; Li, G.; Yu, L. Journal of the American Chemical Society 2008, 131, 56.
    (60) Brabec, C. J. Solar Energy Materials and Solar Cells 2004, 83, 273.
    (61) Roncali, J. Macromolecular rapid communications 2007, 28, 1761.
    (62) Sonar, P.; Singh, S. P.; Li, Y.; Soh, M. S.; Dodabalapur, A. Advanced Materials 2010, 22, 5409.
    (63) Tsao, H. N.; Cho, D. M.; Park, I.; Hansen, M. R.; Mavrinskiy, A.; Yoon, D. Y.; Graf, R.; Pisula, W.; Spiess, H. W.; Müllen, K. Journal of the American Chemical Society 2011, 133, 2605.
    (64) Chu, T.-Y.; Lu, J.; Beaupré, S.; Zhang, Y.; Pouliot, J.-R.; Wakim, S.; Zhou, J.; Leclerc, M.; Li, Z.; Ding, J.; Tao, Y. Journal of the American Chemical Society 2011, 133, 4250.
    (65) Yang, S.; Feng, X.; Zhi, L.; Cao, Q.; Maier, J.; Müllen, K. Advanced Materials 2010, 22, 838.
    (66) Zou, Y.; Najari, A.; Berrouard, P.; Beaupré, S.; Réda Aïch, B.; Tao, Y.; Leclerc, M. Journal of the American Chemical Society 2010, 132, 5330.
    (67) Piliego, C.; Holcombe, T. W.; Douglas, J. D.; Woo, C. H.; Beaujuge, P. M.; Fréchet, J. M. J. Journal of the American Chemical Society 2010, 132, 7595.
    (68) Ling, Q.-D.; Song, Y.; Lim, S.-L.; Teo, E. Y.-H.; Tan, Y.-P.; Zhu, C.; Chan, D. S. H.; Kwong, D.-L.; Kang, E.-T.; Neoh, K.-G. Angewandte Chemie 2006, 118, 3013.
    (69) Ling, Q.-D.; Song, Y.; Teo, E. Y. H.; Lim, S.-L.; Zhu, C.; Chan, D. S. H.; Kwong, D.-L.; Kang, E.-T.; Neoh, K.-G. Electrochemical and Solid-State Letters 2006, 9, G268.
    (70) Bartelmess, J.; Ballesteros, B.; de la Torre, G.; Kiessling, D.; Campidelli, S.; Prato, M.; Torres, T.; Guldi, D. M. Journal of the American Chemical Society 2010, 132, 16202.
    (71) Figueira-Duarte, T. M.; Mullen, K. Chemical reviews 2011, 111, 7260.
    (72) Yamana, K.; Iwai, T.; Ohtani, Y.; Sato, S.; Nakamura, M.; Nakano, H. Bioconjugate Chemistry 2002, 13, 1266.
    (73) Tong, G.; Lawlor, J. M.; Tregear, G. W.; Haralambidis, J. Journal of the American Chemical Society 1995, 117, 12151.
    (74) Paris, P. L.; Langenhan, J. M.; Kool, E. T. Nucleic acids research 1998, 26, 3789.
    (75) Ollmann, M.; Schwarzmann, G.; Sandhoff, K.; Galla, H. J. Biochemistry 1987, 26, 5943.
    (76) Kurzchalia, T. V.; Partan, R. G. Current opinion in cell biology 1999, 11, 424.
    (77) Smit, J. M.; Bittman, R.; Wilschut, J. Journal of virology 1999, 73, 8476.
    (78) Irurzun, A.; Nieva, J.-L.; Carrasco, L. Virology 1997, 227, 488.
    (79) Somerharju, P. Chemistry and physics of lipids 2002, 116, 57.
    (80) Shirota, Y.; Kageyama, H. Chemical reviews 2007, 107, 953.
    (81) Anthony, J. E. Angewandte Chemie International Edition 2008, 47, 452.
    (82) Wu, J.; Pisula, W.; Müllen, K. Chemical reviews 2007, 107, 718.
    (83) Lin, P.-H.; Lee, W.-Y.; Wu, W.-C.; Chen, W.-C. Polymer Bulletin 2011, 69, 29.
    (84) Wu, W.-C.; Liu, C.-L.; Chen, W.-C. Polymer 2006, 47, 527.
    (85) Watanabe, M.; Goto, K.; Fujitsuka, M.; Tojo, S.; Majima, T.; Shinmyozu, T. Bulletin of the Chemical Society of Japan 2010, 1009170165.
    (86) Peng, Q.; Park, K.; Lin, T.; Durstock, M.; Dai, L. The Journal of Physical Chemistry B 2008, 112, 2801.
    (87) Semenikhin, O. A.; Hossain, M. M. D.; Workentin, M. S. The Journal of Physical Chemistry B 2006, 110, 20189.
    (88) Alam, M. M.; Jenekhe, S. A. Chemistry of Materials 2004, 16, 4647.
    (89) Cravino, A.; Sariciftci, N. S. Journal of Materials Chemistry 2002, 12, 1931.
    (90) Miyaura, N.; Suzuki, A. Chemical reviews 1995, 95, 2457.
    (91) Crawford, A. G.; Dwyer, A. D.; Liu, Z.; Steffen, A.; Beeby, A.; Pålsson, L.-O.; Tozer, D. J.; Marder, T. B. Journal of the American Chemical Society 2011, 133, 13349.
    (92) Giacalone, F.; Segura, J. L.; Martín, N.; Catellani, M.; Luzzati, S.; Lupsac, N. Organic Letters 2003, 5, 1669.
    (93) Li, M.; Xu, P.; Yang, J.; Yang, S. Journal of Materials Chemistry 2010, 20, 3953.
    (94) Catellani, M.; Luzzati, S.; Lupsac, N.-O.; Mendichi, R.; Consonni, R.; Famulari, A.; Meille, S. V.; Giacalone, F.; Segura, J. L.; Martín, N. Journal of Materials Chemistry 2004, 14, 67.

    下載圖示 校內:2016-02-13公開
    校外:2016-02-13公開
    QR CODE