簡易檢索 / 詳目顯示

研究生: 許溥鑫
Hsu, Pu-Hsin
論文名稱: 利用光達與近景攝影測量方法獲取水下數值高程模型
Acquiring Underwater DEM Using Close-range Photogrammetry and Green-wavelength Terrestrial Laser Scanner
指導教授: 王驥魁
Wang, Chi-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 47
中文關鍵詞: 水下數值高程模型近景攝影測量水深改正地面光達
外文關鍵詞: Underwater Digital Elevation Model, Close-range Photogrammetry, Water Depth Correction, Terrestrial Laser Scanner
相關次數: 點閱:119下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於水下數值高程模型對於偵測河川環境、獲取河床底質資訊以及量測水工模型有重要價值。本研究使用近景攝影測量以及光達技術獲取水下數值高程模型,並發展出修正折射影響之改正方法。本研究分為兩大主體,其一為近景攝影測量實驗,藉由真實數值高程模型與水下數值高程模型之系統偏差,建立改正回歸式修正水下高程。另一主體為光達技術,以Snell’s Law為基礎建立水下模型改正方法。實驗中以覆蓋Ottawa標準沙之碗狀模型體為建模對象,其直徑為15cm,高度為3cm。藉由比較無水環境中建立出的數值模型(參考真值)以及由5公分開始依序增加5 cm至25cm水深建立之數值模型,比較不同水深下數值高程模型的變化,可得其RMSE與平均值的變化量。本研究所提出之改正方法均有助於快速改正各水深之數值高程模型,結果精度在數值攝影測量實驗中,RMSE數值均小於 1.5 mm, 而在光達技術實驗中,RMSE 均小於4.0 mm。

    Acquiring underwater Digital Elevation Model (DEM) plays a relevant role in sediment environment process observation, the structure of river-bed and the hydraulic model elevation measurements. This research has generated the underwater DEM from close-range photogrammetry and Light detection and ranging (Lidar) techniques with green-wavelength Terrestrial Laser Scanner (TLS) and reports a correction procedure for light refraction effects to estimate underwater topography.
    In this research, we developed a reliable and stable method to correct the water refraction effect by regression method. We also developed the algorithm based on Snell’s Law to correct the water refraction effect in TLS point clouds. A bowl-shaped model with the diameter of 15 cm and the height of 3 cm covered by the Ottawa standard soil was submerged into the water depths from 5 cm to 25 cm for accuracy assessment of our methods. The results show that the corrected DEM has a RMSE value less than 1.5 mm for photogrammetry technique and a RMSE value less than 4.0 mm for lidar technique, respectively.

    ABSTRACT I 摘要 II 致謝 III Table of contents VII List of figures V I. Introduction 1 II. Acquiring Underwater DEM Using Close-range photogrammetry 4 2.1 Introduction 4 2.2 Materials and methods 6 2.2.1. Correction methods 6 2.2.2. Experiment setup 9 2.3 Results and Discussions 12 2.3.1. DEM results 12 2.3.2. Considering the amount of in-situ measurements 15 2.3.3 Comparisons of DEM in horizontal datum 17 2.3.4 Assessment of DEM in tilted datum 20 2.4 Conclusion 24 III. Acquiring Underwater DEM Using Green-wavelength Terrestrial Lidar 25 3.1 Introduction 25 3.2 Experiment Setup 26 3.3 Material and Method 28 3.4 Results and Discussions 31 3.4.1 The index of refraction of water 31 3.4.2 Point accuracy 32 3.4.3 DEM accuracy 36 3.5 Conclusion 43 IV. Conclusion 44 V. Reference: 45

    Aberle, J., & Nikora, V. (2006). Statistical properties of armored gravel bed surfaces. Water resources research, 42, W11414
    Allouis, T., Bailly, J.S., Pastol, Y., & Le Roux, C. (2010). Comparison of LiDAR waveform processing methods for very shallow water bathymetry using Raman, near‐infrared and green signals. Earth Surface Processes and Landforms, 35, 640-650
    Barrile, V., Meduri, G., Bilotta, G., Mastorakis, N., & Martin, O. (2009). Laser scanner surveying techniques aiming to the study and the spreading of recent architectural structures. In: WSEAS
    Beres Jr, M., & Haeni, F. (1991). Application of Ground‐Penetrating‐Radar Methods in Hydrogeologie Studies. Ground Water, 29, 375-386
    Butler, J., Lane, S., Chandler, J., & Porfiri, E. (2002). Through‐water close range digital photogrammetry in flume and field environments. The Photogrammetric Record, 17, 419-439
    Bythell, J., Pan, P., & Lee, J. (2001). Three-dimensional morphometric measurements of reef corals using underwater photogrammetry techniques. Coral Reefs, 20, 193-199
    Eitel, J.U.H., Vierling, L.A., Long, D.S., & Hunt, E.R. (2011). Early season remote sensing of wheat nitrogen status using a green scanning laser. Agricultural and Forest Meteorology
    Fraser, C. (1997). Innovations in automation for vision metrology systems. The Photogrammetric Record, 15, 901-911
    Fraser, C., Cronk, S., & Hanley, H. (2008). Close-range photogrammetry in traffic incident management. In (pp. 125-128): Citeseer
    Fraser, C., Jazayeri, I., & Cronk, S. (2010). A feature-based matching strategy for automated 3D model reconstruction in multi-Image Close-Range Photogrammetry. In
    Green, J., Matthews, S., & Turanli, T. (2002). Underwater archaeological surveying using PhotoModeler, VirtualMapper: different applications for different problems. International Journal of Nautical Archaeology, 31, 283-292
    Hodge, R., Brasington, J., & Richards, K. (2009). In situ characterization of grain‐scale fluvial morphology using Terrestrial Laser Scanning. Earth Surface Processes and Landforms, 34, 954-968
    Lerma, J.L., Navarro, S., Cabrelles, M., & Villaverde, V. (2010). Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: the Upper Palaeolithic Cave of Parpalló as a case study. Journal of Archaeological Science, 37, 499-507
    Lim, M., Petley, D.N., Rosser, N.J., Allison, R.J., Long, A.J., & Pybus, D. (2005). Combined digital photogrammetry and time‐of‐flight laser scanning for monitoring cliff evolution. The Photogrammetric Record, 20, 109-129
    Luhmann, T. (2010). Close range photogrammetry for industrial applications. ISPRS journal of photogrammetry and remote sensing, 65, 558-569
    Maune, D.F. (2001). Digital elevation model technologies and applications: The DEM users manual. In: American Society for Photogrammetry and Remote Sensing
    Milan, D., Heritage, G., Large, A., & Entwistle, N. (2010). Mapping hydraulic biotopes using terrestrial laser scan data of water surface properties. Earth Surface Processes and Landforms, 35, 918-931
    Mobley, C.D. (1994). Light and water: Radiative transfer in natural waters: Academic press San Diego, CA
    Murase, T., Tanaka, M., Tani, T., Miyashita, Y., Ohkawa, N., Ishiguro, S., Suzuki, Y., Kayanne, H., & Yamano, H. (2008). A photogrammetric correction procedure for light refraction effects at a two-medium boundary. Photogrammetric Engineering and Remote Sensing, 74, 1129-1136
    Remondino, F., El-Hakim, S.F., Gruen, A., & Zhang, L. (2008). Turning images into 3-D models. Signal Processing Magazine, IEEE, 25, 55-65
    Rieke‐Zapp, D.H., & Nearing, M.A. (2005). Digital close range photogrammetry for measurement of soil erosion. The Photogrammetric Record, 20, 69-87
    Smart, G., Bind, J., & Duncan, M. (2009). River bathymetry from conventional LiDAR using water surface returns. In, 18th World IMACS/MODSIM Congress
    Strauss, O., Comby, F., & Aldon, M. (1999). Multibeam sonar image matching for terrain-based underwater navigation. In (pp. 882-887 vol. 882): IEEE
    Sun, W., Xu, Q., Xie, G., & Shang, X. (2011). Application of ground penetrating radar with GPS in underwater topographic survey. In (pp. 1946-1949): IEEE
    Westaway, R., Lane, S., & Hicks, D. (2000). The development of an automated correction procedure for digital photogrammetry for the study of wide, shallow, gravel‐bed rivers. Earth Surface Processes and Landforms, 25, 209-226
    Westaway, R., Lane, S., & Hicks, D. (2003). Remote survey of large-scale braided, gravel-bed rivers using digital photogrammetry and image analysis. International Journal of Remote Sensing, 24, 795-815
    Westaway, R.M., Lane, S.N., & Hicks, D.M. (2001). Remote sensing of clear-water, shallow, gravel-bed rivers using digital photogrammetry. Photogrammetric Engineering and Remote Sensing, 67, 1271-1282
    Zhang, J., Lu, Z., & Wang, L. (2008). Precision refractive index measurements of air, N2, O2, Ar, and CO2 with a frequency comb. Applied optics, 47, 3143-3151
    Zhu, L., & Shi, R. (2009). Research on target accuracy for ground-based lidar. In (p. 73230K)

    下載圖示 校內:2018-02-04公開
    校外:2018-02-04公開
    QR CODE