簡易檢索 / 詳目顯示

研究生: 王國維
Wang, Kuo-Wei
論文名稱: 探討Eps8-IRSp53路徑調節大腸癌形成的作用
Investigating Eps8-IRSp53 pathway in colorectal cancer formation
指導教授: 呂增宏
Leu, Tzeng-Horng
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 60
中文關鍵詞: 大腸癌IRSp53Eps8異構物
外文關鍵詞: Colorectal cancer, IRSp53, Eps8, Isoform
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結直腸癌是眾所周知的高死亡率的文明疾病之一。 它是男性和女性中第三大最容易診斷的癌症,也是第二大致命的惡性腫瘤。 IRSp53也稱為brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2)。 它有四種正在研究的IRSp53異構體(T、S、M、L)。 許多報告表明 IRSp53介導肌動蛋白重組。Eps8 (Epidermal Growth Factor Receptor Pathway Substrate 8) 是結直腸癌中的一種致癌蛋白。在早期的研究中,我們發現IRSp53-M蛋白促進了小鼠皮下腫瘤的形成,並且IRSp53-M蛋白進一步增強了細胞的侵襲、細胞遷移。 為了了解 IRSp53 異構體在癌症轉移中的重要性,我們對小鼠進行了腹膜內注射結腸癌細胞。 我們分析了(SW620、SW480、HCT116、WiDr)中IRSp53異構體的mRNA表現量,SW620中IRSp53-M的表達高於其他IRSp53異構體。 我們觀察到SW620、HCT116和HT29細胞,它們是IRSp53-M和T過表達細胞,在小鼠中形成腫瘤,但沒有觀察到SW480細胞形成腫瘤。在soft agar assay中,IRSp53異構體不同程度地促進細胞集落形成。 此外SW480細胞中的IRSp53-M、T蛋白增強了腫瘤的形成,並且我們發現表達IRSp53的細胞中巨噬細胞滲入腫瘤組織。 除此之外,也利用共聚焦顯微鏡新 IRSp53 異構體在調節 F-肌動蛋白聚合和細胞膜定位中的作用,總而言之,這些數據表明IRSp53對於細胞生長、癌化、促成腫瘤生長很重要。

    Colorectal cancer is one of the well-known diseases of civilization with a high fatality rate. It is the third most easily diagnosed cancer and the second most deadly malignant tumor in both male and female. IRSp53 is also called brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2). It has four well study isoforms (T, S, M, L). Many reports indicate IRSp53 mediate actin reorganization. Eps8 (Epidermal Growth Factor Receptor Pathway Substrate 8) is an oncogenic protein in colorectal cancer. In earlier studies, we found that M form promoted tumor formation in the subcutaneous of mice, and M form further enhanced cell invasion, cell migration. To understand the important of IRSp53 isoforms in cancer metastasis, we performed an intraperitoneal inoculation of colon cancer cells in mice. We analyzed mRNA level of IRSp53 isoforms in (SW620, SW480, HCT116, WiDr), the expression of IRSP53-M in SW620 was more than other IRSp53 isoform. We observed SW620, HCT116 and HT29 cells, which are M- and T- overexpressing cells formed tumor in mice, but not SW480 cells. In soft agar, IRSp53 isoform promoted colonies formation in various degree. Moreover, IRSp53 M, and T-form in SW480 cells enhanced tumor formation, and we found that macrophage recruitment in expressing IRSp53 cells. In addition to this, confocal microscopy is used to investigate IRSp53 isoforms in regulating F-actin polymerization and plasma membrane localization. Conclusion, these data demonstrated that IRSp53 is important to regulate cell proliferation in colon cancer formation.

    Abstract in English i Abstract in Chinese ii Acknoledgement iii Abbreviations vii Introduction Colorectal cancer 1 Colon cancer therapy 2 IRSp53 3 IRSp53 regulation 4 Eps8 5 Immunology in colon cancer 6 Aim of this study 7 Material and Methods Antibodies and reagent 8 Cell culture 8 Protein lysate preparation 9 Western blot 10 RNA extraction 11 Reverse transcription PCR 11 Real-Time PCR 12 In vivo tumor growth 12 Soft agar assay 13 Immunofluorescence staining analysis 13 Statistical analysis 14 Results Various mRNA and protein expression of IRSp53 in SW480 SW620, and HT29 colorectal cancer cell lines 15 High expression of IRSp53 and Eps8 in SW620 in promoting tumor formation in mice metastasis model 16 Knockdown of IRSp53 in SW620 cells decreases tumor formation in peritoneal cavity 16 Overexpression of IRSp58M, but not IRSp53S, nor IRSp53T in SW480 cells increases colonies formation in soft agar 17 Overexpression of IRSp58M and IRSp53T promotes tumor formation in SW480 inoculated in mouse peritoneal cavity 18 Common upregulated genes in both 5M cells and 53T cells 19 There is no difference of IRSp53 isoforms trans-localized to plasma membrane in response to IGF-1 treatment 20 Discussion IRSp53 expressed in colon cancer cell enhanced tumor formation 21 Function of macrophage recruitment in colon cancer cell 22 IRSp53M was not significantly difference in soft agar 22 Eps8 was not necessary protein to interact with IRSp53 to form tumor in mice 23 References 24 Tables Table 1 30 Figures Fig 1. IRSp53 isoform of primer sequence targets at different site 33 Fig 2. RNA expression of IRSp53 isoform in colorectal cancer 34 Fig 3. SW620 induce tumor formation in mice model 36 Fig 4. Colon cancer cell and knockdown IRSp53 in SW620 in xenograft 38 Fig 5. IRSp53-S、M promote cell colonies formation in Soft agar 41 Fig 6. IRSp53-M, T induce tumor formation in mice model 43 Fig 7. RNAseq reveals that RNA expression in T-form cell is not like S, M-form cell 46 Fig 8. IRSp53 isoform tended to localize at membrane after IGF-1 treatment, especially IRSp53-T induced move beyond the membrane 59

    Abdel-Rahman, W. M., Ruosaari, S., Knuutila, S., & Peltomäki, P. (2012). Differential roles of EPS8 in carcinogenesis: loss of protein expression in a subset of colorectal carcinoma and adenoma. World J Gastroenterol, 18(29), 3896-3903.
    Afrăsânie, V. A., Marinca, M. V., Alexa-Stratulat, T., Gafton, B., Păduraru, M., Adavidoaiei, A. M., Miron, L., & Rusu, C. (2019). KRAS, NRAS, BRAF, HER2 and microsatellite instability in metastatic colorectal cancer - practical implications for the clinician. Radiol Oncol, 53(3), 265-274.
    Ahmed, S., Goh, W. I., & Bu, W. (2010). I-BAR domains, IRSp53 and filopodium formation. Seminars in Cell & Developmental Biology, 21(4), 350-356.
    Azeem, S., Gillani, S. W., Siddiqui, A., Jandrajupalli, S. B., Poh, V., & Syed Sulaiman, S. A. (2015). Diet and Colorectal Cancer Risk in Asia--a Systematic Review. Asian Pac J Cancer Prev, 16(13), 5389-5396.
    Chen, T. R., Drabkowski, D., Hay, R. J., Macy, M., & Peterson, W., Jr. (1987). WiDr is a derivative of another colon adenocarcinoma cell line, HT-29. Cancer Genet Cytogenet, 27(1), 125-134.
    Cheng, Y., Zhu, Y., Xu, J., Yang, M., Chen, P., Xu, W., Zhao, J., Geng, L., & Gong, S. (2018). PKN2 in colon cancer cells inhibits M2 phenotype polarization of tumor-associated macrophages via regulating DUSP6-Erk1/2 pathway. Mol Cancer, 17(1), 13.
    DeSantis, C. E., Lin, C. C., Mariotto, A. B., Siegel, R. L., Stein, K. D., Kramer, J. L., Alteri, R., Robbins, A. S., & Jemal, A. (2014). Cancer treatment and survivorship statistics, 2014. CA: A Cancer Journal for Clinicians, 64(4), 252-271.
    Fang, M., Li, Y., Huang, K., Qi, S., Zhang, J., Zgodzinski, W., Majewski, M., Wallner, G., Gozdz, S., Macek, P., Kowalik, A., Pasiarski, M., Grywalska, E., Vatan, L., Nagarsheth, N., Li, W., Zhao, L., Kryczek, I., Wang, G., . . . Wang, L. (2017). IL33 Promotes Colon Cancer Cell Stemness via JNK Activation and Macrophage Recruitment. Cancer Res, 77(10), 2735-2745.
    Feng, Z., Hom, M. E., Bearrood, T. E., Rosenthal, Z. C., Fernández, D., Ondrus, A. E., Gu, Y., McCormick, A. K., Tomaske, M. G., Marshall, C. R., Kline, T., Chen, C. H., Mochly-Rosen, D., Kuo, C. J., & Chen, J. K. (2022). Targeting colorectal cancer with small-molecule inhibitors of ALDH1B1. Nat Chem Biol, 18(10), 1065-1075.
    Gala de Pablo, J., Armistead, F. J., Peyman, S. A., Bonthron, D., Lones, M., Smith, S., & Evans, S. D. (2018). Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy. Journal of Raman Spectroscopy, 49(8), 1323-1332.
    Goh, W. I., Lim, K. B., Sudhaharan, T., Sem, K. P., Bu, W., Chou, A. M., & Ahmed, S. (2012). mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in filopodium formation. J Biol Chem, 287(7), 4702-4714.
    Guo, Y., Xiao, P., Lei, S., Deng, F., Xiao, G. G., Liu, Y., Chen, X., Li, L., Wu, S., Chen, Y., Jiang, H., Tan, L., Xie, J., Zhu, X., Liang, S., & Deng, H. (2008). How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin (Shanghai), 40(5), 426-436.
    Huang, R., Liu, H., Chen, Y., He, Y., Kang, Q., Tu, S., He, Y., Zhou, X., Wang, L., Yang, J., Wu, A., & Li, Y. (2018). EPS8 regulates proliferation, apoptosis and chemosensitivity in BCR-ABL positive cells via the BCR-ABL/PI3K/AKT/mTOR pathway. Oncol Rep, 39(1), 119-128.
    Ifosfamide. (2012). In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases.
    Johdi, N. A., & Sukor, N. F. (2020). Colorectal Cancer Immunotherapy: Options and Strategies. Front Immunol, 11, 1624.
    Kang, J., Park, H., & Kim, E. (2016). IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders. Neuropharmacology, 100, 27-39.

    Kast, D. J., & Dominguez, R. (2019). IRSp53 coordinates AMPK and 14-3-3 signaling to regulate filopodia dynamics and directed cell migration. Mol Biol Cell, 30(11), 1285-1297.
    Kast, D. J., Yang, C., Disanza, A., Boczkowska, M., Madasu, Y., Scita, G., Svitkina, T., & Dominguez, R. (2014). Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors. Nature Structural & Molecular Biology, 21(4), 413-422.
    Kast, D. J., Yang, C., Disanza, A., Boczkowska, M., Madasu, Y., Scita, G., Svitkina, T., & Dominguez, R. (2014). Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors. Nat Struct Mol Biol, 21(4), 413-422.
    Kim, Y., Noh, Y. W., Kim, K., Yang, E., Kim, H., & Kim, E. (2020). IRSp53 Deletion in Glutamatergic and GABAergic Neurons and in Male and Female Mice Leads to Distinct Electrophysiological and Behavioral Phenotypes. Front Cell Neurosci, 14, 23.
    Krugmann, S., Jordens, I., Gevaert, K., Driessens, M., Vandekerckhove, J., & Hall, A. (2001). Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Current Biology, 11(21), 1645-1655.
    Kuo, W. Y., Hsu, H. S., Kung, P. T., & Tsai, W. C. (2021). Impact of Socioeconomic Status on Cancer Incidence Risk, Cancer Staging, and Survival of Patients with Colorectal Cancer under Universal Health Insurance Coverage in Taiwan. Int J Environ Res Public Health, 18(22).
    Lazarova, D. L., & Bordonaro, M. (2016). Vimentin, colon cancer progression and resistance to butyrate and other HDACis. J Cell Mol Med, 20(6), 989-993.
    Lim, K. B., Bu, W., Goh, W. I., Koh, E., Ong, S. H., Pawson, T., Sudhaharan, T., & Ahmed, S. (2008). The Cdc42 Effector IRSp53 Generates Filopodia by Coupling Membrane Protrusion with Actin Dynamics*. Journal of Biological Chemistry, 283(29), 20454-20472.
    Liu, L., Sun, L., Li, Z. H., Li, H. M., Wei, L. P., Wang, Y. F., & Qian, Q. J. (2013). BAIAP2 exhibits association to childhood ADHD especially predominantly inattentive subtype in Chinese Han subjects. Behav Brain Funct, 9, 48.
    Liu, M., Fu, X., Jiang, L., Ma, J., Zheng, X., Wang, S., Guo, H., Tian, T., Nan, K., & Wang, W. (2021). Colon cancer cells secreted CXCL11 via RBP-Jκ to facilitated tumour-associated macrophage-induced cancer metastasis. J Cell Mol Med, 25(22), 10575-10590.
    Luo, K., Zhang, L., Liao, Y., Zhou, H., Yang, H., Luo, M., & Qing, C. (2021). Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review). Oncol Rep, 45(3), 824-834.
    Malki, A., ElRuz, R. A., Gupta, I., Allouch, A., Vranic, S., & Al Moustafa, A. E. (2020). Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements. Int J Mol Sci, 22(1).
    Miyahara, A., Okamura-Oho, Y., Miyashita, T., Hoshika, A., & Yamada, M. (2003). Genomic structure and alternative splicing of the insulin receptor tyrosine kinase substrate of 53-kDa protein. Journal of Human Genetics, 48(8), 410-414.
    Noh, Y. W., Yook, C., Kang, J., Lee, S., Kim, Y., Yang, E., Kim, H., & Kim, E. (2022). Adult re-expression of IRSp53 rescues NMDA receptor function and social behavior in IRSp53-mutant mice. Commun Biol, 5(1), 838.
    Okamura-Oho, Y., Miyashita, T., & Yamada, M. (2001). Distinctive tissue distribution and phosphorylation of IRSp53 isoforms. Biochem Biophys Res Commun, 289(5), 957-960.
    Pykäläinen, A., Boczkowska, M., Zhao, H., Saarikangas, J., Rebowski, G., Jansen, M., Hakanen, J., Koskela, E. V., Peränen, J., Vihinen, H., Jokitalo, E., Salminen, M., Ikonen, E., Dominguez, R., & Lappalainen, P. (2011). Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures. Nature Structural & Molecular Biology, 18(8), 902-907.
    Quaglio, A. E. V., Grillo, T. G., De Oliveira, E. C. S., Di Stasi, L. C., & Sassaki, L. Y. (2022). Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol, 28(30), 4053-4060.
    Ribasés, M., Bosch, R., Hervás, A., Ramos-Quiroga, J. A., Sánchez-Mora, C., Bielsa, A., Gastaminza, X., Guijarro-Domingo, S., Nogueira, M., Gómez-Barros, N., Kreiker, S., Groß-Lesch, S., Jacob, C. P., Lesch, K.-P., Reif, A., Johansson, S., Plessen, K. J., Knappskog, P. M., Haavik, J., . . . Cormand, B. (2009). Case-Control Study of Six Genes Asymmetrically Expressed in the Two Cerebral Hemispheres: Association of BAIAP2 with Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 66(10), 926-934.
    Robens, J. M., Yeow-Fong, L., Ng, E., Hall, C., & Manser, E. (2010). Regulation of IRSp53-dependent filopodial dynamics by antagonism between 14-3-3 binding and SH3-mediated localization. Mol Cell Biol, 30(3), 829-844.
    Shahoumi, L. A., Khodadadi, H., Bensreti, H., Baban, B., & Yeudall, W. A. (2020). EPS8 phosphorylation by Src modulates its oncogenic functions. British Journal of Cancer, 123(7), 1078-1088.
    Shiga, T., & Hiraide, M. (2020). Cardiotoxicities of 5-Fluorouracil and Other Fluoropyrimidines. Curr Treat Options Oncol, 21(4), 27.
    Simon, K. (2016). Colorectal cancer development and advances in screening. Clin Interv Aging, 11, 967-976.
    Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249.
    Suyama, K., & Iwase, H. (2018). Lenvatinib: A Promising Molecular Targeted Agent for Multiple Cancers. Cancer Control, 25(1), 1073274818789361.
    Vaggi, F., Disanza, A., Milanesi, F., Di Fiore, P. P., Menna, E., Matteoli, M., Gov, N. S., Scita, G., & Ciliberto, A. (2011). The Eps8/IRSp53/VASP network differentially controls actin capping and bundling in filopodia formation. PLoS Comput Biol, 7(7), e1002088.
    Yang, G., Lu, Y. B., & Guan, Q. L. (2019). EPS8 is a Potential Oncogene in Glioblastoma. Onco Targets Ther, 12, 10523-10534.
    Yang, L., Xie, H. J., Li, Y. Y., Wang, X., Liu, X. X., & Mai, J. (2022). Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review). Oncol Rep, 47(4).
    Zhou, J., Jones, D. R., Duong, D. M., Levey, A. I., Lah, J. J., & Peng, J. (2013). Proteomic analysis of postsynaptic density in Alzheimer's disease. Clin Chim Acta, 420, 62-68.

    無法下載圖示 校內:2026-08-16公開
    校外:2026-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE