簡易檢索 / 詳目顯示

研究生: 鄭伊庭
Cheng, Yi-Ting
論文名稱: 可變螺距風力發電機性能的計算模擬
Performance Numerical Simulation of a Wind Turbine with Variable Pitch Blades
指導教授: 陳世雄
Chen, Shih-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 147
中文關鍵詞: 風力發電機外罩可變螺距
外文關鍵詞: wind turbine, shrouded, variable pitch
相關次數: 點閱:90下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小型風力發電機已知是可以安置一個外罩以讓其達到性能大幅提升的目的,本研究以三維流體力學解析黏性流體Navier-Stokes方程式的方法,探討一具有外罩的小型風力發電機在不同葉片安裝角度下的性能特性,以期在廣泛的風速條件下均能夠有優異性能的發揮。
    論文中探討的模型是以一具1KW額定輸出功率的小型風力發電機為基礎,風速範圍為2 m/s至50 m/s,安裝角度由基礎的角度為基準調整範圍由-10度至+60度,轉速則為固定。
    研究的重點在於不同葉尖速比的條件下整體氣動扭力及功率的輸出與其效率的表現,並據以訂立在各種操作環境下的控制邏輯,以達風力發電機最佳性能發揮的基礎。論文中將討論數值仿真方法、物理模型、重要參數條件、結果的探討及建議達最佳性能發揮的控制邏輯,以做為未來設計者的參考。

    It is well known that a shrouded wind turbine can result in significant improvement in aerodynamic performance over traditional designs. This research is intended to discuss a small wind turbine at various pitch angles, using three-dimensional computational fluid dynamics (CFD) to provide good performance of the wind turbine in a wide range of operating conditions.
    The baseline model is a small wind turbine with a 1KW rated output. The wind velocity range in the study is from 2 m/s to 50 m/s. The pitch variation is from -10˚ to +60˚, based on the baseline design. The rotational speed is kept constant at all operating conditions. The major focus is to discuss the torque, power and efficiency output at various blade tip speed ratios (TSR). The obtained data are used to determine the control logic for blade pitch angle selection in order for the wind turbine to achieve the optimal aerodynamic performance.
    In this thesis, the physical model, boundary conditions, numerical method, parametric effect, and finally suggestions for control logic to achieve the best performance over a wide operating range are discussed for design reference.

    ABSTRACT...................................................i 中文摘要...................................................ii 誌謝.....................................................iii LIST OF TABLES............................................vi LIST OF FIGURES..........................................vii NOMENCLATURE..............................................xi Chapter 1 Introduction.....................................1 1.1 Motivation.............................................1 1.2 Literature Review......................................3 Chapter 2 Numerical Methods................................9 2.1 Governing Equations....................................9 2.2 Turbulence Model......................................11 2.3 Wall Function.........................................12 2.4 Finite Volume Method..................................14 2.5 The Calculation of Numerical Flux.....................18 2.6 Matrix Solver.........................................20 Chapter 3 Physical Model and Calculation Environment......21 3.1 Geometry Shape to Establish...........................21 3.1.1 Definition of the Angle.............................23 3.2 Definition of Calculation Space.......................25 3.3 Boundary Conditions...................................26 3.5 Setting on Calculation Condition......................30 Chapter 4 Result and Discussions..........................31 4.1 Non-dimensional Parameters of the Wind Turbine........31 4.2 Power Coefficient with Tip Speed Ratio Relation.......33 4.3 Torque Coefficient with Tip Speed Ratio Relation......37 4.4 The Pitch Angle Optimal Control for Power Regulation in the Different Wind Velocity...............................38 4.5 The Flow-Field Analysis with the Blade................41 Chapter 5 Conclusions and Perspectives...................140 Reference................................................142

    [1] Kinney, J. R., “Frank W. Caldwell and Variable-Pitch Propeller Development, 1918-1938,” Journal of Aircraft, Vol. 38, No. 5, pp.967-976, September-October, 2001.
    [2] Jetpro Technology, Inc., “JPS-1KW technical data,” September, 2009.
    [3] Nicholas, P. C., “Fundamental of Wind Energy,” Ann Arbor Science Publishers Inc., 1978.
    [4] Sathyajith, M., “Wind Energy-Fundamentals, Resource Analysis and Economics,” Springer, 2006.
    [5] Wu, C. H., “A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial-, and Mixed Flow Type,” NACA TN2604, 1952.
    [6] Hanson, D. B., “Compressible Helicoidal Surface Theory for Propeller Aerodynamics and Noise,” AIAA Journal, Vol. 21, No. 6, pp.881-889, 1983.
    [7] McFarland, E. R., “Solution of plane Cascade Flow Using Improved Surface Singularity Methods,” Journal of Engineering for Power, Vol. 104, pp. 668-647, 1982.
    [8] Kobayakawa, M. and Onuma, H., “Propeller Aerodynamic Performance by Vortex-Lattice Method,” Journal of Aircraft, Vol. 22, No. 8, pp. 649-654, Aug., 1985.
    [9] Chen, Z., and Pan, J., “Efficient Lifting Line Method for Computing Performance of Propeller,” Journal of Aerospace Power Vol. 6, No. 4, Oct., 1991.
    [10] Chen, S. H., and Williams, M. H., “Panel Method for Counter-Rotating Propfans,” Journal of Propulsion and Power, Vol. 7, No. 4, July-Aug., 1991.
    [11] Zhang, J. F., and Liu, S. Y., “The Improved Lift Line Algorithm of Horizontal Axis Wind Turbine Performance,” China Academic Journal, Vol. 18, No. 2, April, 1997.
    [12] Liu, S., Fang, X. J., and Wang, P., “The Mixed Flow-field Algorithm and Performance Investigation of Adjustable-Pitch Horizontal Axis Wind Turbine,” ACTA Energy Solaris Sinica, Vol. 24, No. 3, Jun, 2003.
    [13] Raw, M. R., Galpin, P. E., and Hutchinson, B. R. “A Co-located Finite Volume Method for Solving the Navier-Stokes Equation for Incompressible and Compressible Flow in Turbomachinery: Results and Application,” Canadian Aeronautics and Space Journal, Vol. 35, No.4, Dec., 1989.
    [14] Potsdam, M. A., and Mavriplis, D. J., “Unstructured Mesh CFD Aerodynamic Analysis of the NREL Phase VI Rotor,” 47th, AIAA Aerospace Sciences Meeting, Jan., 2009.
    [15] Kim, B. S., Eum, H. J., Won, J. B., Kim, M. E., and Lee, Y. H., “Performance Analysis of the NREL Phase IV Wind Turbine by CFD,” 5th, National Congress on Fluids Engineering, March, 2008.
    [16] Nilay, S. U., and Lyle, N. L., “3-D Time-Accurate CFD Simulations of Wind Turbine Rotor Flow-fields,” AIAA pp.1-23, 2009.
    [17] Wolfe, W. P., and Ochs, S. S., “CFD Calculations of S809 Aerodynamic Characteristics,” AIAA-97-0973, Jan., 1997.
    [18] Kogan A., and Nissim E., “Shrouded Aerogenerator Design Study, Two-Dimensional Shroud Performance,” Bulletin of the Research Council of Israel, Vol. 11, pp. 67-88, 1962.
    [19] Kogan A., and Singiner, A., “Shrouded Aerogenerator Design Study II, Axisymmetrical Shroud Performance,” Proceedings of the 5th Isreal Annual Conference on Aviation and Astronautics, Israel, 1963.
    [20] Igra, O., “Shrouds for Aerogenerators,” AIAA Journal, pp. 1481-1483, Oct., 1976.
    [21] Bet, F. and Grassmann, H., “Upgrading Conventional Wind Turbines,” Renewable Energy, Vol. 28, pp. 71-78, 2003.
    [22] Huang, C. M., Tsai, G. C., Chen, S. H., Wang, S. H., and Lee, C. S., “Design, Analysis and Fabrication of Composite Material Blade for a 50kW Wind Turbine,” The 31th National Conference on Theoretical and Applied Mechanics, Dec., 2007.
    [23] Wang, S. H., and Chen, S. H., “Aerodynamic Design and Analysis for a 50kW Ducted Wind Turbine,” The 2th Conference on Taiwan Wind Energy Association, pp.74-77, Dec., 2007.
    [24] Wang, S. H., and Chen, S. H., “The Study of Inference Effect for Cascaded Diffuser Augmented Wind Turbines,” The 7th Asia-Pacific Conference on Wind Energy Engineering, Nov., 2007.
    [25] Wang, S. H. and Chen, S. H., “Numerical Simulation for a Ducted Wind Turbine with a Downwind Design,” The 3th Conference on Taiwan Wind Energy Association, pp.49-54, Dec., 2008.
    [26] Wang, S. H. and Chen, S. H., “Blade Number Effect for a Ducted Wind Turbine,” Journal of Mechanical Science and Technology, vol. 22, pp.1984-1992, 2008.
    [27] Battista, H., Mantz, R. J., and Christiansen, C. F., “Performance Analysis of a Variable Structure Controller for Power Regulation of WECS Operating in the Stall Region,” International Journal of Energy Research, pp. 1345-1357, 2001.
    [28] Liu, H. P., and Liao, M. F., “Performance Comparison of Stall-controlled Wind Turbines and Pitch-controlled Wind Turbine” Machinery Design and Manufacture, Vol. 8, pp. 42-43, 2005.
    [29] Chiang, T. L., and Chuang, C. H., “Analysis on Pitch Control of the Wind Turbine Blade,” AASRC Conference, Nov., 2007.
    [30] “ANSYS CFX-Slover Release10.0: Theory,” ANSYS, Inc., 2005.
    [31] Huang, C. Y., “Aerodynamic Analysis of Advanced Propellers,” Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan, R.O.C., Thesis for Master Degree, July, 1997.
    [32] Hsieh, M. J., “Numerical Thermal Simulation of a Turbine Nozzle with Suction Side Film Cooling, ” Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan, R.O.C., Dissertation for Doctor of Philosophy, Feb., 2008.
    [33] Lin, C. Y., “High Performance Propeller Analysis and Testing,” Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan, R.O.C., Thesis for Master Degree, July, 2008.
    [34] Chen, P. C., “Numerical Simulation of Torque Converter Squashing Design,” Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan, R.O.C., Thesis for Master Degree, July, 2009.
    [35] Launder, B. E., and Spalding, D. B., “The Numerical Computation of Turbulent Flows,” Journal of Computer Methods in Applied Mechanics and Engineering, Vol. 3, No. 2, pp. 269-289, 1974.
    [36] Spalding, D. B., “Monograph on Turbulent Boundary Layer,” Imperial College, Mechanical Engineering, Depart. Rep. TWF/TN/33, 1967.
    [37] Wolfshtein, M. W., “The Velocity and Temperature Distribution and Pressure Gradient,” Int. J. Heat and Mass Transfer, Vol. 12, pp. 301, 1969.
    [38] Van Doormaal, J. P., Turan, A., and Raithby, G. D., “Evaluation of New Techniques for the Calculation of Internal Recirculating Flows,” AIAA paper 87-0059, 1987.
    [39] Raithby, G. D., “Skewed Upstream Differencing Schemes for Problems Involving Fluid Flow,” Journal of Computer Methods in Applied Mechanics and Engineering, Vol. 9, No. 2, pp. 153-164, 1976.
    [40] 賈斌, “全程變槳距風能轉換裝置的氣動研究,” 內蒙古工業大學碩士學位論文, Feb., 2005.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE