簡易檢索 / 詳目顯示

研究生: 黃敬元
Huang, Jing-Yuan
論文名稱: 雙層屋頂之熱傳分析
Heat Transfer Analysis on a Double Roof Structure
指導教授: 邱政勳
Chiou, Jenq-Shing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 63
中文關鍵詞: 自然對流雙層屋頂被動式冷卻設計
外文關鍵詞: natural convection, double roof, passive cooling design
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

      雙層屋頂是被動式冷卻技術應用的一種,利用屋頂受熱後加熱兩板之間空氣產生熱浮力,達到自然對流通風的效果。輻射阻隔物(RBS)是一種良好的反射面用以阻絕頂板與底板間的輻射熱傳,降低傳入室內的熱量,本研究以實驗方式來探討利用雙層屋頂配合RBS來阻隔可能進入室內的熱傳量。
      本文針對雙層屋頂在不同的傾斜角之下,改變空氣間層的厚度傳熱實驗的量測與分析。並且求在不同的傾斜角其所對應的最佳化間距。雙層屋頂的最佳化間距隨著傾斜角的增加而有增大的趨勢,而且最佳間距值約等於兩倍的邊界層厚度。
      在最佳化間距下,雙層屋頂配合RBS的隔熱具極佳之隔熱效果,其隔熱率可高達96%。

    ABSTRACT

      The structure of using double roof is one of an application of passive cooling design. The roof heated by solar irradiation will in turn heat the air between two plates. Due to thermal buoyancy force the hot air moving upward and inducing the cold air flow from bottom inlet to reach natural ventilation. Radiant Barrier Surface(RBS)is a nearly perfect reflect or in blocking the radiation heat transfer between plates. In this study, the structure of double-plates incorporate a RBS is used in our tests to investigate the blocking effect of indoor heat penetration.
      The tests were conducted under different plate inclinations, and different gaps between plates. The detailed heat flows were calculated and the best gap size under each inclination angle were obtained. The best gap size was found to increase with the inclination angle, and the magnitude of the best gap is about twice of thermal boundary layer thickness.
      Under the best gap, the double roof with RBS can block the incoming heat up to 96%.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 符號說明 Ⅸ 第一章 緒論 1 1-1 前言 1 1-2 研究背景與動機 3 1-3 文獻回顧 4 1-4 本文架構 10 第二章 熱傳分析 11 2-1雙層屋頂的隔熱特性 11 2-2自然對流的散熱 14 2-2-1 垂直渠道 14 2-2-2 傾斜渠道 16 2-3 流道之最佳化 17 2-3-1 EGM 法(Entropy Generation Minimization Method) 17 2-3-2 不可逆性分析 18 2-4 穩態模式 20 第三章 實驗設備與實驗步驟 24 3-1實驗裝置 24 3-1-1 實驗本體設計與尺寸 25 3-1-2 模擬太陽輻射之鹵素燈泡裝置 26 3-2實驗儀器裝置與量測方法 28 3-2-1 儀器量測點位 28 3-2-2 實驗量測儀器 29 3-2-3 實驗儀器連線 31 3-3 實驗材料與幾何尺寸 32 3-3-1 實驗材料性質 32 3-3-2 實驗模型之構造形式 34 3-4 實驗條件與操作流程 35 3-4-1 實驗設定條件 35 3-4-2 實驗流程與步驟 35 第四章 結果與討論 38 4-1 雙層屋頂流道的隔熱性能測試 38 4-4-1傳熱分量之分析 43 4-4-2間層內之熱能平衡 45 4-2 雙層屋頂流道增設RBS的隔熱性能測試 50 4-3 最佳化間距 53 4-3-1與過去文獻結果之比較 53 4-3-2與邊界層厚度之比較 55 第五章 結論 56 5-1 綜合結論 56 5-2 未來展望 57 參考文獻 58 自述 63

    1.山田雅士(1992), 《建築絕熱》, 台北市:台北斯坦, ISBN:957-9112-09-6。
    2.葉歆 編著(1997),《建築熱環境》, 台北市:淑馨, ISBN:957-531-573-1。
    3.江哲銘(1997), 《建築物理》, 台北市:三民書局, ISBN:957-14-2400-5。
    4. 林憲德 主編(2001),《綠建築解說與評估手冊》, 主辦單位:內政部建築研究所。 ISBN:957-023-795-3。
    5.蘇金佳 譯(1995),《冷凍與空調》, 美商麥格羅.希爾, ISBN:957-9453-08-X。
    6.周鼎金 編著(1999),《建築物理》, 台北市:旭營文化事業, ISBN:957-99666-6-4。
    7. 萬迪隸 編(1995),《冷凍與空調工程》, 台北市:台灣東華, ISBN:957-636-749-2。
    8. 葉倉郎 著(1970),《冷凍空調工程》, 台北市:三民書局。
    9. 陳瑞益(2006), “提升屋頂隔熱性能之綠建築構造方式--內含RBS之雙層斜屋頂流道”私立立德管理學院資源環境研究所碩士論文。
    10. 邱繼哲、侯文祥(2002), “建築物及生物成長設施之誘導式通風冷卻設計研究”,國立台灣大學生物環境系統工程學研究所碩士論文,台灣台北。
    11. 黃國樑 譯(1983 ),〈建築自然冷房技術簡介〉,《建築師》, 1983-5 月號, pp.29-33, 台北市:中華民國建築師公會全國聯合會雜誌社。
    12. Cengel, Y. A. ( 1998 ). Heat transfer:a practical approach. McGraw-Hill. ISBN: 0-07-011505-2.
    13. Arora, C. P. ( 2000 ). Refrigeration and air conditioning. McGraw-Hill. ISBN: 0-07-463010-5.
    14. Frank, P. I., David, P. D. ( 1996 ). Fundamental of Heat and Mass Transfer (4). New York:Wiley.
    15. Khedari, J., Hirunlabh, J., Bunnag, T. ( 1996 ). “Experimental study of a roof solar collector towards the natural ventilation of new habitations.” Renewable Energy. 8(1-5), pp. 335-338.
    16. Hirunlabh, J., Khedari, J, Bunnag, T. (1997),“Experimental study of a roof solar collector towards the natural ventilation of new houses.” Energy and Buildings, pp. 159-164.
    17. Gan, G. ( 1998 ), “A parametric study of Trombe walls for passive cooling of buildings.” Energy and Buildings, 27(1), pp. 37-43.
    18. Hamdy, I. F., Fikry, M. A. (1998). “Passive Solar Ventilation.” Renewable Energy, Vol. 14, Nos. 1-4, pp. 381-386.
    19. Khedari, J., Mansirisub, W., Chaima, S., Pratinthong, N., Hirunlabh, J. ( 2001 ). “New configurations of roof solar collector maximizing natural ventilation.” Buildings and Environment, 36, pp. 383–391.
    20. Khedari, J., Yimsamerjit, P., Hirunlabh, J. ( 2002 ), “Experimental investigation of free convection in roof solar collector.” Buildings and Environment, 37, pp. 455–459.
    21. Chen, Z. D., Bandopadhayay, P., Halldorsson, J., Byrjalsen, C., Heiselberg, P., Li, Y.(2003).”An experimental investigation of a solar chimney model with uniform wall heat flux.” Building and Environment 38, pp.893-906.
    22. Bar-Cohen, A., Rohsenow , W. M. (1984). “Thermally Optimum Spacing of Vertical , Natural Convection Cooled , Parallel Plates .” Transactions of the ASME , Vol 106 , pp.116-123.
    23. Azevedo, L. F. A., Sparrow, E. M.(1985).”Natural Convection in Open-Ended Inclined Channels.” Journal of Heat Transfer, Vol 106, pp.893-901 .
    24. Anand, N. K., Kim, S. H., Fletcher, L. S.(1992). ”The Effect of Plate Spacing on Free Convection Between Heated Parallel Plates.” Journal of Heat Transfer, Vol. 114, pp.515-518.
    25. Hung, W. H., Kou, H. S. (1988), “Studies in free and mixed convection heat transfer between vertical parallel plates subject to free boundary.” (NSC)
    26. Mcquiston, F. C., Parker, J. D. ( 1994 ). Heating ventilating, and air conditioning.
    27. Pratt, A. W.(1981).Heat transmission in buildings. John Wiley & Sons, Ltd. ISBN : 0-471-27971-4.
    28. Khedari, J., Hirunlabh, J., Bunnag, T.( 1999 ), “Experimental study of a roof solar collector towards the natural ventilation of new houses.” Energy and Buildings. 26(2), pp. 159-164.
    29. Hirunlabh, J., Kongdung, W., Namprakai, P., Khedari, J. (1999), “Study of natural ventilation of houses by a metallic solar wall under tropical climate,” Renewable Energy.18, pp.109-119.
    30. Gan, G ( 2000 ), “Numerical evaluation of thermal comfort in rooms with dynamic insulation.” Building and Environment. 35, pp. 445-453.
    31. Ostrach, S.,(1953) “An Analysis of Laminar Free Convection Flow and Heat Transfer About a Flat Parallel to the Direction of the Generating Body Force,” National Advisory Committee for Aeronautics, Report 1111.
    32. Stoecker, W. F, Jones, J.W.,(1982). Refrigeration and Air Conditioning. McGraw-Hill.ISBN:0-07-061619-3.
    33. Bejan, A. (2001). “Thermodynamic Optimization of Geometry in Engineering Flow Systems.” International J. Exergy14, pp.269-277.
    34. Hollands, K. G. T., Unny, T. E.(1976).”Free Convection Heat Transfer Across Inclined Air Layers.” Journal of Heat Transfer, pp. 189-193.
    35. Elenbaas, W.(1942), “Heat Dissipation of Parallel by Free Convection.” Physica, Vol. 9, pp. 1-28.
    36. Bejan, A. (1995), Entropy generation minimization:the method of thermodynamic optimization of finite-size and finite-time processes. CRC Press, Boca Raton.
    37. Bejan, A. (1993), Heat Transfer . John Wiley & Sons , Inc., New York.
    38. Bejan, A.(1996), Thermal Design And Optimization. John Wiley & Sons , Inc., New York.
    39. Incropera, F. P., Dewitt, D. P. (1996), Fundamentals of Heat and Mass Transfer. John Wiley & Sons, Ltd. ISBN:0-471-30460-3.

    無法下載圖示 校內:2103-08-07公開
    校外:2103-08-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE