| 研究生: |
李坤瑾 Lee, Kuen-Jin |
|---|---|
| 論文名稱: |
解析來自兩種不同細胞株的腸病毒71型病毒之構型 Revealing the characteristics of EV71 particles derived from two different cell lines |
| 指導教授: |
吳尚蓉
Wu, Shang-Rung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 腸病毒71型 、穿透式電子顯微鏡 、低溫冷凍電子顯微鏡 、固相免疫免疫電子顯微鏡 、單粒子分析 、三維結構重組 |
| 外文關鍵詞: | enterovirus 71, TEM, cryo-TEM, affinity grid, antibody-based affinity grid, single particles analysis, three-dimensional reconstruction |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近十年來,腸病毒71型被認為是一個全球性的新興病毒。它是一種大小約為30奈米,屬於微小核糖核酸病毒科(Picornaviridae family)裡腸道病毒屬(enterovirus genus)的單股RNA病毒。腸病毒71的蛋白殼是一個由VP1、VP2、VP3以及VP4結構蛋白所組成的二十面體。腸病毒71是造成手足口疾病(hand-foot-and-mouth disease, HFMD)大爆發的元凶,可能會造成嚴重的中樞神經反應表現,像是遲緩性癱瘓、脊髓灰質炎、急性腦脊髓炎、急性腦幹腦炎和無菌性腦膜炎等等。這些病症也使得腸病毒71型有著高死亡率以及癒後長期性的神經後遺症,所以目前關於腸病毒71型的研究依然是大家所持續進行的研究。根據國家衛生研究院周彥宏老師實驗室在先前的生化實驗與動物實驗中,發現RD (Rhabdomyosarcoma)細胞產出之病毒相較於Vero細胞產出的病毒在噬菌斑測定與小鼠病徵反應上有著顯著的差異;另外根據定序的結果我們也發現到這兩個細胞產出的病毒在VP1蛋白的區域有胺基酸變異產生。因此我們想以低溫穿透式電子顯微鏡結合單粒子三維結構重組技術去解析這兩種來自不同細胞株的腸病毒71有何表徵上的差異。由我們解析出的結構結果顯示,它們兩者在5-對稱軸處有著明顯的差異,RD產出的病毒在5-對稱軸是個開口結構,然而從Vero產生的病毒是個突起結構.為了大大地提升樣品的數量以增加結構解析度,我們在銅網的碳膜鋪上蛋白A(protein A)及與病毒專一性高的抗體來抓取更多的病毒顆粒。結果顯示此免疫親和銅網 (antibody-based affinity grid) 可以成功地抓取更多的病毒顆粒.但解析出來的結構解析度不如預期,可能的原因是所使用的抗體造成形態上的變化,以致樣品異值性高,解析度無法提高。未來若要成功使用免疫親和銅網來增加樣品數,專一性高,但卻不會造成形態上變化的抗體是首選,此外,使用高加速電壓及高階影像照相系統都是增加結構解析度的關鍵。最後,這個研究的發現對於腸病毒腸71型的研究提供了另一個思路。
The statistical report showed that Enterovirus 71 (EV71) was identified as an emerging virus worldwide in recent decade years. Enterovirus 71 is a ~30 nm single-stranded RNA virus from the enterovirus genus in the Picornaviridae family. Enterovirus capsid is an icosahedron, which is made up by VP1, VP2, VP3 and VP4 structural proteins. The infection of EV71 usually causes outbreaks of hand-foot-and-mouth disease (HFMD). EV71 can lead to severe neurological manifestations, such as flaccid paralysis, poliomyelitis, acute encephalomyelitis, acute brainstem encephalitis and aseptic meningitis. Those maladies bring on high mortality rates or long-term neurological sequelae in survivors. Therefore, the studies about EV71 is still popular. The previous studies from our cooperative laboratory –Dr. Chow in NHRI in Taiwan showed that the viruses produced by Rhabdomyosarcoma (RD) cell has different plaque result and symptom reaction in mice comparing to ones produced in Vero. Sequencing result showed that there were several amino acid differences in VP1 region. Here, we would like to characterize the RD-derived EV71 (EV-R) and Vero-derived EV71 (EV-V) particles by cryo transmission electron microscopy (cryo-TEM) and three-dimensional reconstruction. The cryo-TEM structure showed that the structural differences were located at 5-fold axis, there was an opening structure in the 5-fold axis of EV-R structure while a bump structure in EV-V. In order to elevate the concentration and purity of specimen, antibody-based affinity grid approach was used. Affinity grid indeed successful improved the number of particles, however the structural resolution was nor improved. The possible reason is that the antibody used in our affinity grid caused the conformational changes of the virus. To successfully implement the affinity grid for structural improvement, choosing the right antibody which will not cause the conformational change will be critical. Besides, using TEM with higher accelerating voltage and Direct Detection Device (DDD) will make high resolution structures possible. These findings of the mutant EV71 here may provide a new direction for study EV71 research.
1. Barreto-Vieira DF & Barth OM. Negative and Positive Staining in Transmission Electron Microscopy for Virus Diagnosis. 10.5772/60511(2015).
2. Basavappa R, Gómez-Yafal A & Hogle JM. The Poliovirus Empty Capsid Specifically Recognizes the Poliovirus Receptor and Undergoes Some, but Not All, of the Transitions Associated with Cell Entry. J Virol 72, 7551-7556 (1998).
3. Belnap DM, et al. Molecular Tectonic Model of Virus Structural Transitions: the Putative Cell Entry States of Poliovirus. J Virol 74, 1342-1354 (2000).
4. Boekema EJ, Folea M & Kouril R. Single particle electron microscopy. Photosynth Res 102, 189-196 (2009).
5. Boulant S, Stanifer M & Lozach PY. Dynamics of Virus-Receptor Interactions in Virus Binding, Signaling, and Endocytosis. Viruses 7, 2794-2815 (2015).
6. Brenner S & Horne RW. A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta 34, 103-110 (1959).
7. Brlansky RH & Derrick KS. Detection of Seedborne Plant-Viruses Using Serologically Specific Electron-Microscopy. Phytopathology 69, 96-100 (1979).
8. Carroni M & Saibil HR. Cryo electron microscopy to determine the structure of macromolecular complexes. Methods 95, 78-85 (2016).
9. Chen P, et al. Molecular determinants of enterovirus 71 viral entry: cleft around GLN-172 on VP1 protein interacts with variable region on scavenge receptor B 2. J Biol Chem 287, 6406-6420 (2012).
10. Chua BH, Phuektes P, Sanders SA, Nicholls PK & McMinn PC. The molecular basis of mouse adaptation by human enterovirus 71. J Gen Virol 89, 1622-1632 (2008).
11. Cifuente JO, et al. Structures of the procapsid and mature virion of enterovirus 71 strain 1095. J Virol 87, 7637-7645 (2013).
12. Czarnocki-Cieciura M & Nowotny M. Introduction to high-resolution cryo-electron microscopy. Postepy Biochem 62, 383-394 (2016).
13. Dang M, et al. Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71. Protein Cell 5, 692-703 (2014).
14. De Carlo S & Harris JR. Negative staining and cryo-negative staining of macromolecules and viruses for TEM. Micron 42, 117-131 (2011).
15. Derrick KS. Quantitative assay for plant viruses using serologically specific electron microscopy. Virology 56, 652-653 (1973).
16. Doerr A. Single-particle cryo-electron microscopy. Nature Methods 13, 23-23 (2015).
17. Earl LA & Subramaniam S. Cryo-EM of viruses and vaccine design. Proc Natl Acad Sci U S A 113, 8903-8905 (2016).
18. Elmlund D & Elmlund H. Cryogenic electron microscopy and single-particle analysis. Annu Rev Biochem 84, 499-517 (2015).
19. Elmlund D, Le SN & Elmlund H. High-resolution cryo-EM: the nuts and bolts. Curr Opin Struct Biol 46, 1-6 (2017).
20. Eskelinen EL, Tanaka Y & Saftig P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 13, 137-145 (2003).
21. Feng X, et al. A Fast and Effective Microfluidic Spraying-Plunging Method for High-Resolution Single-Particle Cryo-EM. Structure 25, 663-670 e663 (2017).
22. Frank J. Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat Protoc 12, 209-212 (2017).
23. Frenette PS, et al. P-Selectin Glycoprotein Ligand 1 (Psgl-1) Is Expressed on Platelets and Can Mediate Platelet–Endothelial Interactions in Vivo. J Exp Med 191, 1413-1422 (2000).
24. Gonzalez-Martinez IG, et al. Electron-beam induced synthesis of nanostructures: a review. Nanoscale 8, 11340-11362 (2016).
25. Hauer F, et al. GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM. Structure 23, 1769-1775 (2015).
26. Hendricks GM. Metal shadowing for electron microscopy. Methods Mol Biol 1117, 73-93 (2014).
27. Ho M, et al. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med 341, 929-935 (1999).
28. Horne RW & Wildy P. An historical account of the development and applications of the negative staining technique to the electron microscopy of viruses. J Microsc 117, 103-122 (1979).
29. Huang PN & Shih SR. Update on enterovirus 71 infection. Curr Opin Virol 5, 98-104 (2014).
30. Kelly DF, Abeyrathne PD, Dukovski D & Walz T. The Affinity Grid: a pre-fabricated EM grid for monolayer purification. J Mol Biol 382, 423-433 (2008).
31. Kelly DF, Dukovski D & Walz T. A Practical Guide to the Use of Monolayer Purification and Affinity Grids. 481, 83-107 (2010).
32. Ku Z, et al. Single Neutralizing Monoclonal Antibodies Targeting the VP1 GH Loop of Enterovirus 71 Inhibit both Virus Attachment and Internalization during Viral Entry. J Virol 89, 12084-12095 (2015).
33. Lee KY. Enterovirus 71 infection and neurological complications. Korean J Pediatr 59, 395-401 (2016).
34. Lin JY & Shih SR. Cell and tissue tropism of enterovirus 71 and other enteroviruses infections. J Biomed Sci 21, 18 (2014).
35. Lin YW, et al. Human SCARB2-mediated entry and endocytosis of EV71. PLoS One 7, e30507 (2012).
36. Liu CC, et al. Identification and characterization of a cross-neutralization epitope of Enterovirus 71. Vaccine 29, 4362-4372 (2011).
37. Liu CC, Chow YH, Chong P & Klein M. Prospect and challenges for the development of multivalent vaccines against hand, foot and mouth diseases. Vaccine 32, 6177-6182 (2014).
38. Liu CC, Lian WC, Butler M & Wu SC. High immunogenic enterovirus 71 strain and its production using serum-free microcarrier Vero cell culture. Vaccine 25, 19-24 (2007).
39. Liu J, et al. Transgenic expression of human P-selectin glycoprotein ligand-1 is not sufficient for enterovirus 71 infection in mice. Arch Virol 157, 539-543 (2012).
40. Lyu K, et al. Human enterovirus 71 uncoating captured at atomic resolution. J Virol 88, 3114-3126 (2014).
41. Lyu K, et al. Crystal structures of enterovirus 71 (EV71) recombinant virus particles provide insights into vaccine design. J Biol Chem 290, 3198-3208 (2015).
42. Malatesta M. Transmission electron microscopy for nanomedicine: novel applications for long-established techniques. Eur J Histochem 60, 2751 (2016).
43. Martin TG, et al. Design of a molecular support for cryo-EM structure determination. Proc Natl Acad Sci U S A 113, E7456-E7463 (2016).
44. Ng Q, He F & Kwang J. Recent Progress towards Novel EV71 Anti-Therapeutics and Vaccines. Viruses 7, 6441-6457 (2015).
45. Nishimura Y, et al. Enterovirus 71 binding to PSGL-1 on leukocytes: VP1-145 acts as a molecular switch to control receptor interaction. PLoS Pathog 9, e1003511 (2013).
46. Nishimura Y, et al. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med 15, 794-797 (2009).
47. Nishimura Y, Wakita T & Shimizu H. Tyrosine sulfation of the amino terminus of PSGL-1 is critical for enterovirus 71 infection. PLoS Pathog 6, e1001174 (2010).
48. Pathinayake PS, Hsu AC & Wark PA. Innate Immunity and Immune Evasion by Enterovirus 71. Viruses 7, 6613-6630 (2015).
49. Plevka P, et al. Neutralizing antibodies can initiate genome release from human enterovirus 71. Proc Natl Acad Sci U S A 111, 2134-2139 (2014).
50. Plevka P, Perera R, Cardosa J, Kuhn RJ & Rossmann MG. Crystal structure of human enterovirus 71. Science 336, 1274 (2012).
51. Plevka P, Perera R, Cardosa J, Kuhn RJ & Rossmann MG. Structure determination of enterovirus 71. Acta Crystallogr D Biol Crystallogr 68, 1217-1222 (2012).
52. Plevka P, et al. Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci U S A 110, 5463-5467 (2013).
53. Pohlmann S & Simmons G. Viral Entry into Host Cells PREFACE. Viral Entry into Host Cells 790, V-Vi (2013).
54. Pourianfar HR & Grollo L. Development of antiviral agents toward enterovirus 71 infection. J Microbiol Immunol Infect 48, 1-8 (2015).
55. Prager P, Nolan M, Andrews IP & Williams GD. Neurogenic pulmonary edema in enterovirus 71 encephalitis is not uniformly fatal but causes severe morbidity in survivors. Pediatr Crit Care Med 4, 377-381 (2003).
56. Ren J, et al. Picornavirus uncoating intermediate captured in atomic detail. Nat Commun 4, 1929 (2013).
57. San Martin C. Transmission electron microscopy and the molecular structure of icosahedral viruses. Arch Biochem Biophys 581, 59-67 (2015).
58. Schmidt NJ, Lennette EH & Ho HH. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 129, 304-309 (1974).
59. Schmidt-Krey I & Rubinstein JL. Electron cryomicroscopy of membrane proteins: specimen preparation for two-dimensional crystals and single particles. Micron 42, 107-116 (2011).
60. Shih SR, Stollar V & Li ML. Host factors in enterovirus 71 replication. J Virol 85, 9658-9666 (2011).
61. Shingler KL, et al. The enterovirus 71 A-particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog 9, e1003240 (2013).
62. Sigworth FJ. Principles of cryo-EM single-particle image processing. Microscopy (Oxf) 65, 57-67 (2016).
63. Solomon T, et al. Virology, epidemiology, pathogenesis, and control of enterovirus 71. The Lancet Infectious Diseases 10, 778-790 (2010).
64. Tan CW, Lai JKF, Sam IC & Chan YF. Recent developments in antiviral agents against enterovirus 71 infection. J Biomed Sci 21, 14 (2014).
65. Tuthill TJ, Groppelli E, Hogle JM & Rowlands DJ. Picornaviruses. Curr Top Microbiol Immunol 343, 43-89 (2010).
66. van der Linden L, Wolthers KC & van Kuppeveld FJ. Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses 7, 4529-4562 (2015).
67. Wang SM & Liu CC. Update of enterovirus 71 infection: epidemiology, pathogenesis and vaccine. Expert Rev Anti Infect Ther 12, 447-456 (2014).
68. Wang Y, et al. Enterovirus 71 infection in children with hand, foot, and mouth disease in Shanghai, China: epidemiology, clinical feature and diagnosis. Virol J 12(2015).
69. Wu SC, Liu CC & Lian WC. Optimization of microcarrier cell culture process for the inactivated enterovirus type 71 vaccine development. Vaccine 22, 3858-3864 (2004).
70. Xu J, et al. EV71: an emerging infectious disease vaccine target in the Far East? Vaccine 28, 3516-3521 (2010).
71. Yamayoshi S, Fujii K & Koike S. Receptors for enterovirus 71. Emerg Microbes Infect 3, e53 (2014).
72. Yamayoshi S, et al. Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. J Virol 86, 5686-5696 (2012).
73. Yamayoshi S & Koike S. Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. J Virol 85, 4937-4946 (2011).
74. Yamayoshi S, Ohka S, Fujii K & Koike S. Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J Virol 87, 3335-3347 (2013).
75. Yamayoshi S, et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med 15, 798-801 (2009).
76. Yan X, Dryden KA, Tang J & Baker TS. Ab initio random model method facilitates 3D reconstruction of icosahedral particles. J Struct Biol 157, 211-225 (2007).
77. Yan X, Sinkovits RS & Baker TS. AUTO3DEM--an automated and high throughput program for image reconstruction of icosahedral particles. J Struct Biol 157, 73-82 (2007).
78. Yee PT & Poh CL. Development of Novel Vaccines against Enterovirus-71. Viruses 8(2015).
79. Yip CC, Lau SK, Woo PC & Yuen KY. Human enterovirus 71 epidemics: what's next? Emerg Health Threats J 6, 19780 (2013).
80. Yu G, Li K, Huang P, Jiang X & Jiang W. Antibody-Based Affinity Cryoelectron Microscopy at 2.6-A Resolution. Structure 24, 1984-1990 (2016).
81. Yu G, Li K & Jiang W. Antibody-based affinity cryo-EM grid. Methods 100, 16-24 (2016).
82. Yu G, et al. Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies. J Struct Biol 187, 1-9 (2014).
83. Zhang D, Lu J & Lu J. Enterovirus 71 vaccine: close but still far. Int J Infect Dis 14, e739-743 (2010).
84. Zhang X, et al. The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection. Protein Cell 10.1007/s13238-017-0405-7(2017).
85. Zhang Y, et al. An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of hand foot and mouth disease in Fuyang city of China. Virol J 7, 94 (2010).