| 研究生: |
黃文宏 Huang, Wen-Hong |
|---|---|
| 論文名稱: |
以乾式厭氧醱酵技術探討固體豬糞與農業剩餘資材共醱酵之研究:生質能源與減碳效益評估 A Study on the Co-Digestion of Solid Swine Manure and Agricultural Byproducts via Dry Anaerobic Digestion: Evaluation of Biomass Energy Production and Carbon Reduction Benefits |
| 指導教授: |
黃良銘
Whang, Liang-ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 乾式厭氧醱酵 、共醱酵 、固體豬糞 、農業剩餘資材 、再生能源 |
| 外文關鍵詞: | Dry Anaerobic Digestion, Co-Digestion, Solid Swine Manure, Agricultural Byproducts, Renewable Energy |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據畜產會的統計,臺灣於2023年飼養超過530萬頭豬隻,而豬糞尿處理過程與固渣的堆置會產生大量甲烷與氧化亞氮等溫室氣體並產生異味影響周邊環境。根據環境部的統計,2022年豬糞尿處理的碳排高達80萬公噸二氧化碳當量,成為畜牧糞尿管理中最大的溫室氣體排放來源。
乾式厭氧醱酵是一種資源化導向技術,主要為高固含量有機廢棄物所設計,特別適用於畜禽糞便、農作物稻草及其他有機固體廢棄物。與濕式厭氧醱酵相比,乾式厭氧醱酵具備更高的產氣效率、更低的需水量、更小的設置空間,以及顯著的減碳效益。
本研究將乾式厭氧醱酵技術應用於高固含量豬糞的處理,以減輕傳統豬隻廢水處理對環境的衝擊與高能耗問題,並透過混合豬糞與農業剩餘資材進行共醱酵,提升並最佳化厭氧產甲烷的產氣潛力。
在研究的第一階段,進行了固體豬糞與農業剩餘資材(包含市場廢棄果菜、檸檬皮及玉米莖)的生化甲烷潛能(BMP)試驗,以評估在不同植種添加比策略與共醱酵混合比例下的厭氧醱酵效能。結果顯示,豬糞與果菜以1:1與1:2(VS 基準)的混合比例進行共醱酵時,分別達到 579.51 與 599.00 L-biogas/kg-VS 的甲烷產量,均高於單一基質處理,展現出明顯的協同效應。BMP測試的動力學模型擬合結果進一步顯示,Superimposed模型在描述高固含量、異質基質的雙相降解行為上具有最佳準確度。
在第二階段,採用實驗室規模之車庫式乾式厭氧醱酵系統,以模擬多槽進料的實際操作條件。結果發現,在固體停留時間(SRT)14天的條件下,共醱酵組的產氣量可達 674.25 L-biogas/kg-VS,顯著優於單一基質處理。
能源與減碳效益的評估進一步證實,此系統具備相當高的減碳潛能。依據本研究量測之產氣數據進行計算,若沼氣用於發電,處理每噸有機質的總減碳效益約為1噸CO2e;若進一步作為熱源以取代天然氣,則可提升至1.55–1.62噸CO2e。這些結果凸顯乾式厭氧醱酵兼具減緩溫室氣體排放與提供再生能源的雙重優勢,展現其在農業與食品工業領域永續發展上的潛力。
Swine farming is the backbone of Taiwan’s livestock industry, with over 5.3 million pigs raised in 2023. The treatment of swine manure and urine generated methane (CH4) and nitrous oxide (N2O), contributing up to 800 kilotons of CO2-equivalent in 2022, making it the largest emission source within manure management.
Dry Anaerobic Digestion is a resource-oriented technology specifically designed for high-solid-content organic waste, making it suitable for livestock manure, crop straw, and other organic solid residues. Compared to wet anaerobic digestion, dry anaerobic digestion offers advantages such as higher biogas yield, lower water requirement, smaller footprint, and notable carbon reduction benefits.
This study applies dry anaerobic digestion technology to the treatment of high-solid-content swine manure, aiming to mitigate the environmental impacts and energy-intensive requirements of conventional swine wastewater management. By co-digesting swine manure with agricultural by-products, the research seeks to enhance and optimize biochemical methane production.
In this study, biochemical methane potential (BMP) tests were conducted using solid swine manure and agricultural byproducts, including vegetable waste, lemon peels, and corn stalks, to evaluate anaerobic digestion performance under different inoculation strategies and mixing ratios. Results demonstrated that co-digestion of solid swine manure and vegetable waste at mixing ratios of 1:1 and 1:2 achieved methane yields of 579.51 and 599.00 L-biogas/kg-VS, respectively, which were higher than those of individual substrates, indicating clear synergistic effects. BMP kinetic model fitting further revealed that the Superimposed model provided the best accuracy for describing the dual-phase degradation behavior of heterogeneous, high-solid substrates.
In the second stage, a lab-scale garage-type dry anaerobic digestion system was employed to simulate multi-chamber operating conditions. The co-digestion group achieved up to 674.25 L-biogas/kg-VS at a solid retention time of 14 days, significantly outperforming single substrates.
The evaluation of energy and carbon reduction benefits further demonstrated that this system offers substantial mitigation potential. Based on the measured gas yield, the total reduction reached approximately 1 ton CO2e per ton of VS when biogas was used for electricity generation and could be further increased to 1.55–1.62 tons CO2e per ton of VS when applied as a heat source to replace natural gas. These findings highlight the dual role of dry anaerobic digestion in reducing greenhouse gas emissions and providing renewable energy, underscoring its potential for sustainable development in the agricultural and food industry sectors.
中央畜產會. (2024). 2023臺灣養豬統計手冊.
白明德, 張志強, 盧文章, & 林昀輝. (2018). 生質有機污泥乾式厭氧醱酵能源化利用. 工業材料, 384卷, 63-68.
郭猛德, & 蕭庭訓.(1989). 養豬三段式廢水與污泥處理技術. 行政院農業委員會畜產試驗所.
環境部. (2024). 2024年中華民國國家溫室氣體排放清冊報告.
盧俊青, & 白明德. (2023). 淨零排放趨勢下食品工業之因應策略. 工業材料雜誌, 440, 167–172. https://www.materialsnet.com.tw
Abbassi-Guendouz, A., Brockmann, D., Trably, E., Dumas, C., Delgenès, J.-P., Steyer, J.-P., & Escudié, R. (2012). Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresource technology, 111, 55-61.
Akuzawa, M., Hori, T., Haruta, S., Ueno, Y., Ishii, M., & Igarashi, Y. (2011). Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microbial ecology, 61, 595-605.
Alvarez, R., & Lidén, G. (2009). Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production. Biomass and bioenergy, 33(3), 527-533.
Angelidaki, I., & Ahring, B. K. (1993). Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Applied microbiology and biotechnology, 38, 560-564.
Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., ... & Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water science and technology, 59(5), 927-934.
Angelidaki, I., Ellegaard, L., & Ahring, B. K. (2003). Applications of the anaerobic digestion process. Biomethanation ii, 1-33.
Astals, S., Romero-Güiza, M., & Mata-Alvarez, J. (2013). Alternative energies. G. Ferreira.
Batstone, D. J., & Jensen, P. D. (2011). Anaerobic Processes: Treatise on Water Science.
Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., . . . Vavilin, V. (2002). The IWA anaerobic digestion model no 1 (ADM1). Water Science and technology, 45(10), 65-73.
Beck, J. V., & Arnold, K. J. (1977). Parameter estimation in engineering and science. James Beck.
Belmonte, M., Hsieh, C. F., Figueroa, C., Campos, J. L., & Vidal, G. (2011). Effect of free ammonia nitrogen on the methanogenic activity of swine wastewater. Electronic Journal of Biotechnology, 14(3), 2-2.
Bouallagui, H., Touhami, Y., Cheikh, R. B., & Hamdi, M. (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process biochemistry, 40(3-4), 989-995.
Braun, B., Huber, P., Meyrath, J., 1981, “Ammonia toxicity in liquid piggery manure digestion,” Biotechnology Letters, Vol. 3, pp.159-164.
Capson-Tojo, G., Trably, E., Rouez, M., Crest, M., Bernet, N., Steyer, J. P., ... & Escudié, R. (2018). Methanosarcina plays a main role during methanogenesis of high-solids food waste and cardboard. Waste Management, 76, 423-430.
Cecchi, F.; Battistoni, P.; Pavan, P.; Bolzanella, D.; Innocenti, L. Digestione Anaerobica Della Frazione Organica dei Rifiuti Solidi; APAT: Rome, Italy, 2005; p. 178.
Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of statistics, 265-270.
Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource technology, 99(10), 4044-4064.
Cheng, H.H., Whang, L.M., Yi, T.F., Liu, C.P., Lin, T.F. 2018. Pilot study of cold-rolling wastewater treatment using single-stage anaerobic fluidized membrane bioreactor. in: Bioresource Technology, Vol. 263, Elsevier, pp. 418-424.
Colleran, E., Finnegan, S., & Lens, P. (1995). Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek, 67, 29-46.
Cotter, P. D., & Hill, C. (2003). Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiology and molecular biology reviews, 67(3), 429-453.
De Baere, L. A., Devocht, M., Van Assche, P., & Verstraete, W. (1984). Influence of high NaCl and NH4Cl salt levels on methanogenic associations. Water research, 18(5), 543-548.
Fernandes, T. V., Keesman, K. J., Zeeman, G., & van Lier, J. B. (2012). Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin. Biomass and Bioenergy, 47, 316-323.
Fernández, J., Pérez, M., & Romero, L. I. (2008). Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresource technology, 99(14), 6075-6080.
Fukuzaki, S., Nishio, N., Shobayashi, M., & Nagai, S. (1990). Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate. Applied and environmental microbiology, 56(3), 719-723.
Gallert, C., Bauer, S., & Winter, J. J. A. M. (1998). Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Applied microbiology and biotechnology, 50, 495-501.
Garcia, M. L., & Angenent, L. T. (2009). Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment. water research, 43(9), 2373-2382.
González-Fernández, C., & García-Encina, P. A. (2009). Impact of substrate to inoculum ratio in anaerobic digestion of swine slurry. Biomass and Bioenergy, 33(8), 1065-1069.
Hansen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic digestion of swine manure: inhibition by ammonia. Water research, 32(1), 5-12.
Hartmann, H., & Ahring, B. K. (2006). Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview. Water Science and technology, 53(8), 7-22.
Hejnfelt, A., & Angelidaki, I. (2009). Anaerobic digestion of slaughterhouse by-products. Biomass and bioenergy, 33(8), 1046-1054.
Hilton, B. L., & Oleszkiewicz, J. A. (1988). Sulfide-induced inhibition of anaerobic digestion. Journal of environmental engineering, 114(6), 1377-1391.
Ho, L., & Ho, G. (2012). Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid. Water research, 46(14), 4339-4350.
Hobson, P. N., & Shaw, B. G. (1976). Inhibition of methane production by Methanobacterium formicicum. Water Research, 10(10), 849-852.
Jiang, Y., Heaven, S., & Banks, C. J. (2012). Strategies for stable anaerobic digestion of vegetable waste. Renewable energy, 44, 206-214.
Karthikeyan, O. P., & Visvanathan, C. (2012). Effect of C/N ratio and ammonia-N accumulation in a pilot-scale thermophilic dry anaerobic digester. Bioresource Technology, 113, 294-302.
Kayhanian, M. (1994). Performance of a high‐solids anaerobic digestion process under various ammonia concentrations. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 59(4), 349-352.
Kayhanian, M. (1999). Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environmental technology, 20(4), 355-365.
Kayhanian, M. (1999). Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environmental technology, 20(4), 355-365.
Kim, W., Shin, S. G., Cho, K., Lee, C., & Hwang, S. (2012). Performance of methanogenic reactors in temperature phased two-stage anaerobic digestion of swine wastewater. Journal of bioscience and bioengineering, 114(6), 635-639.
Koster, I. W., & Lettinga, G. (1988). Anaerobic digestion at extreme ammonia concentrations. Biological wastes, 25(1), 51-59.
Kothari, R., Pandey, A., Kumar, S., Tyagi, V., & Tyagi, S. (2014). Different aspects of dry anaerobic digestion for bio-energy: An overview. Renewable and Sustainable Energy Reviews, 39, 174-195.
Lay, J. J., Li, Y. Y., & Noike, T. (1998). The influence of pH and ammonia concentration on the methane production in high‐solids digestion processes. Water environment research, 70(5), 1075-1082.
Li, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and sustainable energy reviews, 15(1), 821-826.
Marchaim, U., & Krause, C. (1993). Propionic to acetic acid ratios in overloaded anaerobic digestion. Bioresource technology, 43(3), 195-203.
Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and sustainable energy reviews, 36, 412-427.
Mawson, A. J., Earle, R. L., & Larsen, V. F. (1991). Degradation of acetic and propionic acids in the methane fermentation. Water Research, 25(12), 1549-1554.
McCartney, D. M., & Oleszkiewicz, J. A. (1993). Competition between methanogens and sulfate reducers: effect of COD: sulfate ratio and acclimation. Water Environment Research, 65(5), 655-664.
McCarty, P. L. (1964). Anaerobic waste treatment fundamentals. Public works, 95(9), 107-112.
Misi, S. N., & Forster, C. F. (2001). Batch co-digestion of multi-component agro-wastes. Bioresource technology, 80(1), 19-28.
Morgan-Sagastume, F., Pratt, S., Karlsson, A., Cirne, D., Lant, P., & Werker, A. (2011). Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants. Bioresource technology, 102(3), 3089-3097.
Nakakubo, R., Møller, H. B., Nielsen, A. M., & Matsuda, J. (2008). Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion. Environmental Engineering Science, 25(10), 1487-1496.
O'Flaherty, V., Lens, P., Leahy, B., & Colleran, E. (1998). Long-term competition between sulphate-reducing and methane-producing bacteria during full-scale anaerobic treatment of citric acid production wastewater. Water Research, 32(3), 815-825.
O'Flaherty, V., Mahony, T., O'Kennedy, R., & Colleran, E. (1998). Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochemistry, 33(5), 555-569.
Panigrahi, S.; Dubey, B.K. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew. Energy 2019, 143, 779–797.
Parkin, G. F., Lynch, N. A., Kuo, W. C., Van Keuren, E. L., & Bhattacharya, S. K. (1990). Interaction between sulfate reducers and methanogens fed acetate and propionate. Research Journal of the Water Pollution Control Federation, 780-788.
Parkin, G. F., Owen, W. F., 1986, “Fundamentals of Anaerobic Digestion of Wastewater Sludge,” Journal of Environmental Engineering, Vol. 112, pp. 867-920.
Pratt, S., Liew, D., Batstone, D. J., Werker, A. G., Morgan-Sagastume, F., & Lant, P. A. (2012). Inhibition by fatty acids during fermentation of pre-treated waste activated sludge. Journal of biotechnology, 159(1-2), 38-43.
Procházka, J., Dolejš, P., Máca, J., & Dohányos, M. (2012). Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied microbiology and biotechnology, 93, 439-447.
Sawayama, S., Tada, C., Tsukahara, K., & Yagishita, T. (2004). Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion. Journal of bioscience and bioengineering, 97(1), 65-70.
Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423.
Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412-3418.
Siles, J. A., Brekelmans, J., Martín, M. A., Chica, A. F., & Martín, A. (2010). Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion. Bioresource technology, 101(23), 9040-9048.
Sprott, G. D., & Patel, G. B. (1986). Ammonia toxicity in pure cultures of methanogenic bacteria. Systematic and applied microbiology, 7(2-3), 358-363.
Sreekrishnan, T. R., Kohli, S., & Rana, V. (2004). Enhancement of biogas production from solid substrates using different techniques––a review. Bioresource technology, 95(1), 1-10.
Staley, B.F.; Reyes, F.L.d.L.; Barlaz, M.A. Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl. Environ. Microbiol. 2011, 77, 2381–2391.
Steffen, R., Szolar, O., & Braun, R. (1998). Feedstocks for anaerobic digestion. Institute of Agrobiotechnology Tulin, University of Agricultural Sciences, Vienna, 1-29.
Sui, Q., Liu, C., Dong, H., & Zhu, Z. (2014). Effect of ammonium nitrogen concentration on the ammonia-oxidizing bacteria community in a membrane bioreactor for the treatment of anaerobically digested swine wastewater. Journal of bioscience and bioengineering, 118(3), 277-283.
Sukhesh, M. J., & Rao, P. V. (2018). Anaerobic digestion of crop residues: technological developments and environmental impact in the Indian context. Biocatalysis and Agricultural Biotechnology, 16, 513-528.
Sung, S., & Liu, T. (2003). Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere, 53(1), 43-52.
ten Brummeler, E. (2000). Full scale experience with the BIOCEL process. Water Science and technology, 41(3), 299-304.
Tursman, J. F., & Cork, D. J. (1989). Influence of sulfate and sulfate-reducing bacteria on anaerobic digestion technology. Advances in biotechnological processes, 12, 273-285.
Vandevivere, P., De Baere, L., & Verstraete, W. (2003). Types of anaerobic digester for solid wastes. In Biomethanization of the organic fraction of municipal solid wastes (pp. 111-140). Iwa Publishing.
Vavilin, V. A., Qu, X., Mazéas, L., Lemunier, M., Duquennoi, C., He, P., & Bouchez, T. (2008). Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste. Antonie Van Leeuwenhoek, 94, 593-605.
Wang, Q., Kuninobu, M., Ogawa, H. I., & Kato, Y. (1999). Degradation of volatile fatty acids in highly efficient anaerobic digestion. Biomass and Bioenergy, 16(6), 407-416.
Wang, Y., Zhang, Y., Wang, J., & Meng, L. (2009). Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass and bioenergy, 33(5), 848-853.
Wang, Z., Jiang, Y., Wang, S., Zhang, Y., Hu, Y., Hu, Z. H., ... & Zhan, X. (2020). Impact of total solids content on anaerobic co-digestion of pig manure and food waste: Insights into shifting of the methanogenic pathway. Waste Management, 114, 96-106.
Wang, Z., Xu, F., & Li, Y. (2013). Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover. Bioresource technology, 144, 281-287.
Wu, J., Hu, Y. Y., Wang, S. F., Cao, Z. P., Li, H. Z., Fu, X. M., ... & Zuo, J. E. (2017). Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis. Waste Management, 62, 69-75.
Wittmann, C., Zeng, A. P., & Deckwer, W. D. (1995). Growth inhibition by ammonia and use of a pH-controlled feeding strategy for the effective cultivation of Mycobacterium chlorophenolicum. Applied microbiology and biotechnology, 44, 519-525.
Xiao, K. K., Guo, C. H., Zhou, Y., Maspolim, Y., Wang, J. Y., & Ng, W. J. (2013). Acetic acid inhibition on methanogens in a two-phase anaerobic process. Biochemical Engineering Journal, 75, 1-7.
Xu, Z., Zhao, M., Miao, H., Huang, Z., Gao, S., & Ruan, W. (2014). In situvolatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion. Bioresource technology, 163, 186-192.
Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383-392.
Zhang, Y., Zhao, Y., Feng, Y., Yu, Y., Li, Y., Li, J., ... & Han, Y. (2023). Novel intelligent system based on automated machine learning for multiobjective prediction and early warning guidance of biogas performance in industrial-scale garage dry fermentation. ACS ES&T Engineering, 4(1), 139-152.
校內:2030-08-27公開