| 研究生: |
黃馨儀 Huang, Shin-Yi |
|---|---|
| 論文名稱: |
高幀率多光子激發顯微術之研製 R&D of High Frame-Rate Multiphoton Excitation Microscopy |
| 指導教授: |
陳顯禎
Chen, Shean-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 多光子激發螢光顯微術 、共振掃描震鏡 、現場可程式化閘陣列 |
| 外文關鍵詞: | multiphoton excited fluorescence microscopy, resonant scanning galvanometer, field-programmable gate array. |
| 相關次數: | 點閱:164 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超快雷射的發明提供多光子激發螢光顯微術在生物醫學相關領域上多樣性的應用,發展至今解析度與掃描幀率不斷地提升,共軛顯微術大幅提升了三維影像對比度;高速掃描器提供更快的影像幀率,因此許多研究欲觀測活體細胞動態便需要透過即時觀測系統幫助。本論文主要目的為建構以快速二維掃描為基礎開發高時間空間解析度之多光子顯微術,並將其應用在動態分子影像上,希望提升二維影像幀率。將以往雙軸掃描系統中,其中一軸震鏡改為共振掃描震鏡(resonant scanning galvanometer),其振盪頻率為8 kHz,提供更快速的點掃描速度,搭配同公司出產之Pixel Clock電路板,能擷取共振掃描震鏡掃描資訊,其像素同步頻率最高達15 MHz,為應付如此快速的取樣速度,使用由NI公司出產之FlexRIO介面卡和高速資料擷取前端模組,其中包含現場可程式化閘陣列(Field-programmable gate array,FPGA),可快速收取兩軸震鏡信號並觸發光電倍增管擷取螢光訊號,使用NI公司成熟發展的LabVIEW軟體設計整體系統程式介面,處理所有類比數位訊號、讀取數據以及呈現多光子影像。
The invention of ultrafast-laser provides various applications for multiphoton microscopy in biomedical field. Recently, the resolution and frame rate of microscopy have great improvements. Confocal microscopy increases the 3D image contrast. The high speed scanning tools provide faster frame rate. In this research, we build a high temporal and spatial resolution multiphoton microscope based on high-speed 2D scanning method and we hope to increase frame rate for imaging cell dynamics. We adopt resonant galvanometer whose resonant frequency is 8 kHz to achieve rapid scanning speed in order to replace the traditional galvanometer. The system combines with the pixel clock board with the frequency ranges from 7.5 MHz to 15 MHz that contains scanning information of resonant galvanometer. Due to the fast sampling rate, we utilize FlexRIO which contains field-programmable gate array (FPGA) chip and high-speed data acquisition module to collect signal from galvanometers and to trigger photomultiplier tubes (PMT) to receive fluorescence signal. We use LabVIEW programming language of National Instruments (NI) to design overall system to process analog and digital signals, system parameters, and display images.
[1] Denk W, Stricker J.H, Webb W.W, “Two-photon laser scanning fluorescence microscopy,” Science, 248, 73-76(1990).
[2] I. Freund and M. Deutsch, “Second-harmonic microscopy of biological tissue,” Opt. Lett. 11, 94-96(1986).
[3] G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:Sapphire system,” J. Microsc. 181, 253-259(1996).
[4] A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real-time two-photon absorption microscopy using multipoint excitation,” J. Microsc. 192, 217-226(1998).
[5] J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655-657(1998)
[6] Maria Goeppert-Mayer, “Ober Elementaraktemit zwei Quantensprungen,” Annalen der Physik 9, 273-294(1931).
[7] W. Kaiser and C. G. B. Garrett, “Two-Photon Excitation in Ca F 2 :E u 2+,” Phys. Rev. Lett. 7, 229-231(1961).
[8] I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electronics. 14, 10-18(2008).
[9] G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three dimensional random access multiphoton microscopy for fast functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713-720(2008).
[10] B. F. Grewe, F. F. Voigt, M. van’t Hoff, and F. Helmchen, “Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,” Biomed. Opt. Express 2(7), 2035-2046(2011).
[11] M. Duocastella, G. Vicidomini, and A. Diaspro, “Simultaneous multiplane confocal microscopy using acoustic tunable lenses,” Opt. Express 22(16), 19293-19301(2014).
[12] http://www.google.com/patents/US20150042992
[13] http://www.tag-optics.com/technology.php
[14] K. Dhakal, B. Black, and S. Mohanty, “Introduction of impermeable actin-staining molecules to mammalian cells by optoporation,” Sci. Rep. 4: 6553, 1-7(2014).
[15] P. J. Keller and E. H. K. Stelzer, “Quantitative in vivo imaging of entire embryos with digital scanned laser light sheet fluorescence microscopy,” Curr. Opin. Neurobiol. 18, 624-632(2008).
[16] J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J. 2(3), 143-155((2008).
[17] M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10, 413-420 (2013).
[18] M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hill,an, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9, 113-119(2015).
[19] L. C. Cheng, C. Y. Chang, C. Y. Lin, K. C. Cho, W. C. Yen, N. S. Chang, C. Xu, C. Y. Dong, and S. J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939-8948(2012).
[20] T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri, “ Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light,” Nat. Methods. 10, 1013-1020(2013).
[21] A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev.112, 1940-1949(1958).
[22] http://www.hk-phy.org/articles/laser/laser.html
[23] Charles G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus , “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express. 20, 13677-13683(2012).
[24] http://www.kmlabs.com/
[25] https://www.newport.com/
[26] T. V. Truong, W, Supatto, D. S. Koos, J. M. Choi, and S. E Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods. 8, 757-760(2011).
[27] http://www.camtech.com/index.php
[28] http://microscopyu.com/articles/confocal/resonantscanning.html
[29] http://www.hamamatsu.com/jp/en/index.html
[30] http://www.ni.com/en-ca.html
[31] http://www.olympusmicro.com/primer/java/jablonski/jabintro/
[32] https://www.activemotif.com/catalog/details/15076/rhodamine-6g-gsd-goat-anti-rabbit-igg