簡易檢索 / 詳目顯示

研究生: 葉玟伶
Yeh, Wen-Ling
論文名稱: 基於虛擬生產控制系統之最佳化需求推拉機制
An Optimal Demand Push/Pull Scheme based on the Virtual Production Control System
指導教授: 鄭芳田
Cheng, Fan-Tien
共同指導教授: 楊浩青
Yang, Haw-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: 最佳下單建議虛擬生產管制系統多目標規劃混合整數線性規劃
外文關鍵詞: optimal purchase order suggestion, virtual production control system, multi-objective programming, mixed integer programming
相關次數: 點閱:122下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在IC供應鏈體系下,IC設計廠專注於其設計本業,而設計後續製造生產則委外由晶圓與封測廠負責。由於晶圓生產長達6~10週,時間變異大,對委外之需求端而言,除了有效率規劃下單排程外,能掌握供應商在製品資訊與供給時程,必要時能與供應商進行有依據的協調拉貨,實為需求端的重要任務。
    本研究基於虛擬生產管制系統(Virtual Production Control System, VPCS),以不同規劃模型對缺料部分提出下單建議或拉貨協調。在下單建議上,透過建立混合整數線性規劃(Mixed Integer Linear Programming, MIP)模型,以最大化達交率為目標,滿足下單前推時間限制與製程月產能限制條件下,求得最佳之採購建議。就拉貨協調而言,收集在製品資料與VPCS產出推估,推算在不同物料之產出時間,並建立多目標規劃(Multi Objective Programming, MOP)模型,以最小化拉貨數量和最小化供需差額為目標,可求解拉貨建議。
    在研究成果上,透過整合VPCS與最佳化規劃模型。相較某IC設計廠下單建議而言,本研究之資料正確性可由原98%提升至100%,而整體達交率可從93.2%提升至96.2%。在拉貨協調上,若基於供應商產出時程,產品之個別達交率可由73% 提升至85%;而若基於VPCS產出推估,則達交率可進一步提升至91%。

    An IC design company focuses its IC design and releases following manufacturing activities to foundries and packaging/testing companies in an IC supply chain. Due to long and variant time for wafer production, the important tasks of the outsourcing requestor of a IC design company are how to effectively schedule order plans and evidently coordinate with suppliers for pulling in or pushing out IC according to information and delivery plans of WIP.
    This study based the virtual production control system (VPCS) suggests purchase orders by a programming model and proposes feasible pull-in plans by production estimation. For purchase order suggestion, a mixed integer programming model is used to find the optimal suggestion by maximizing the order-fill rate (OFR) under constraints, i.e. lead time, capacity, and inventory minimization. For pull-in coordination, a multi-objective programming model is presented to derive the feasible plan by minimizing the pull-in numbers and differences between demand and supply according to WIP information and production output times estimated by the VPCS.
    Results of this work indicate that the data accuracy is improved from 98% to 100% and the overall OFR is improved from 93.2% to 96.2% while using the proposed method to compare with the IC design company. Moreover, the individual OFR of a product is improved from 73% to 85% while based on the projected schedule by the supplier; however, the OFR can be up to 91% when applying the estimation of the VPCS.

    中文摘要 英文摘要 誌謝 目錄 i 圖目錄 iii 表目錄 iv 符號定義表 vi 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 5 1.3 論文架構 7 第二章 理論方法 8 2.1 文獻探討 8 2.1.1 最佳化方法-數學規劃 8 2.1.2 供應商選擇與訂單分配 10 2.1.3 結論 11 2.2 提出方法 12 2.2.1 系統架構 12 2.2.2 供需資料彙整 13 2.2.3 下單規劃 14 2.2.4 拉貨決策 18 第三章 系統開發 21 3.1 系統分析 21 3.2 系統設計 24 3.2.1 VPCS系統架構 24 3.2.2 資料結構 26 3.2.4 循序圖 29 第四章 實驗與驗證 33 4.1 供需資料彙整 33 4.2 下單規劃 36 4.2.1 模型驗證 36 4.2.2 流程驗證 37 4.2.3 下單計畫庫存分析 41 4.3 拉貨決策 43 4.3.1 資料前處理與模型驗證 43 4.3.2 虛擬生產控制系統推估與拉貨 48 4-4 決策彙整流程 50 第五章 結論 53 5.1 結論 53 5.2 未來研究方向 54 參考文獻 55 附錄 57

    [1] K. Mitsutake and K. Okumura, “An electronic commerce for semiconductor products comprises a network, a client terminal, a connection server, a virtual production line, and a real production line,” US patent no: 6788985, 2004.
    [2] H. C Yang, Y. L. Chen, and F. T. Cheng, “A Solution-Oriented Approach for Fabless Virtual Production Risk Control,” submitted to IEEE Transactions on Industrial Informatics.
    [3] D. M. Chiang, R.-S. Guo, and F.-Y. Pai, “Improved customer satisfaction with a hybrid dispatching rule in semiconductor back-end factories,” International Journal of Production Research, vol. 46, no.17, pp. 4903-4923, 2008.
    [4] L. H. Lee, “Aligning supply chain strategies with product uncertainties,” California Management Review, vol. 44, no. 3, pp. 105-119, 2002.
    [5] H. C. Yang, Y. L. Chen, M. H. Hung, and F. T. Cheng, “Virtual Production Control System,” in Proc. of the IEEE Conference on Automation Science and Engineering, pp. 984-989, Toronto, Canada, 2010.
    [6] T. L. Saaty, The analytic hierarchy process, McGraw-Hill, New York, 1980.
    [7] T. L. Saaty, Decision Making with Dependence and Feedback: The Analytic Net-work Process, RWS Publication, Pittsburgh USA, 1996.
    [8] C. J. Liao and C. H. Shyu, “An analytical determination of lead time with normal demand,” International Journal of Operations Production Management, vol. 11, pp. 72-78, 1991.
    [9] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons Ltd, Chichester, England, 1998.
    [10] W. F. Bialas and M. H. Karwan, “Two-Level Linear programming,” Management Science, vol. 30, no. 8, pp. 1004-1020, 1984.
    [11] W. F. Bialas and M. H. Karwan, “Multilevel Linear Programming,” Industrial Engineering SUNY at Buffalo, Research Report, no. 78-1, 1978.
    [12] E. A. Demirtas and O. Ustun, “An integrated multiobjective decision making process for supplier selection and order allocation,” Omega, vol. 36, no. 1, pp. 76-90, 2008.
    [13] J. R. Yu and C. C. Tsai, “A decision framework for supplier rating and purchase allocation: A case in the semiconductor industry,” Computers & Industrial Engineering, vol. 55, pp. 634-646, 2008.

    下載圖示 校內:2013-08-16公開
    校外:2013-08-16公開
    QR CODE