| 研究生: |
楊雙愷 Yang, Shuang-Kai |
|---|---|
| 論文名稱: |
量子領域內因果關係的破壞與糾纏的出現 Internal Causality Breaking and Emergence of Entanglement in the Quantum Realm |
| 指導教授: |
張為民
Zhang, Wei-Min 蔡錦俊 Tsai, Chin-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 量子機率 、量子糾纏 、因果律 、量子測量 、路徑積分 、惠勒延遲選擇實驗 |
| 外文關鍵詞: | Quantum Probability, Quantum Entanglement, Causality, Quantum Measurement, Path Integral, Wheeler's Delayed Choice Experiment |
| 相關次數: | 點閱:103 下載:29 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們採用費曼路徑積分形式重新檢視量子力學的基礎公設,特別是與機率和測量相關的公設。此方法提供了一種更為簡潔且以原則為基礎的物理現象解釋,遵循奧卡姆剃刀原則,從而減少量子力學中的推測性成分。我們研究了兩個透過分束器彼此耦合的光子的量子動力學。換句話說,這兩個光子可以透過分束器中的原子相互交換能量,並以兩個模的初始可分離純態開始。通過這類系統,我們重新探討了一些基本且長期存在的問題,包括量子領域中糾纏的產生以及波粒二象性。首先,我們在理論上計算了惠勒的延遲選擇實驗。這一思想實驗可以在同一系統中實現,方法是將其中一個光子轉化為真空態,從而使該系統可以被視為單光子通過分束器的情況。通過解析地求解量子運動方程而不依賴機率性解釋,我們證明了在純量子態中引入量子機率並非必要,因為統計性質通過動力學和測量過程自然湧現。因此,機率在量子框架內本質上是內生的。此外,我們探討了量子糾纏的底層機制。我們觀察到,雖然整體系統仍然滿足確定性的薛丁格方程,但內部因果性被破壞,且子系統的演化在特定條件下表現為非單位的(非幺正)。這些發現為量子糾纏的產生機制提供了新的見解。
In this thesis, we employ the Feynman path integral formulation to re-examine the foundational axioms of quantum mechanics, particularly those related to probability and measurement. This approach offers a more concise and principle-based interpretation of physical phenomena, adhering to the principle of Occam's razor, thereby reducing speculative elements within quantum mechanics. We investigate the quantum dynamics of two photons which are coupled to each other through a beam splitting; in other words, these two photons can interchange the energy to each other by the atoms in the beam splitter, and start with an initially separable pure state for the two modes. Through this kind of system, we review those basic and long-standing questions, including the emergence of entanglement in the quantum realm and wave-particle duality. First, we calculate Wheeler's delayed choice experiment in theory, and this edankenexperiment can be realized within the same system by transforming one of the photons into a vacuum state, thereby allowing the system to be treated as a single photon passing through a beam splitter. By analytically solving the quantum equation of motion without invoking probabilistic interpretations, it is demonstrated that introducing quantum probability into the pure quantum state is unnecessary, as the statistical properties emerge naturally through the dynamics and measurement process. Consequently, probability arises inherently within the quantum framework. On top of that, we explore the underlying mechanisms of the quantum entanglement. We observe that while the total system continues to satisfy the deterministic Schrödinger equation, internal causality is disrupted, and the evolution of the subsystem becomes non-unitary, except under specific conditions. These findings provide insight into the emergence of quantum entanglement.
[1] P. A. M. Dirac, The principles of quantum mechanics (Oxford university press, 1981).
[2] M. Planck, The theory of heat radiation (Blakiston, 1914).
[3] T. H. Boyer, “Blackbody radiation in classical physics: A historical perspective”, Am. J. Phys. 86, 495–509 (2018).
[4] W. Pauli Jr., “Über das wasserstoffspektrum vom standpunkt der neuen quantenmechanik”, Z. Phys. A 36, 336–363 (1926).
[5] E. Schrödinger, “Quantisierung als eigenwertproblem”, Ann. Phys. (Leipzig) 385, 437–490 (1926).
[6] I. Duru and H. Kleinert, “Solution of the path integral for the H-atom”, Phys. Lett. 84, 185–188 (1979).
[7] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum mechanics, volume 1 (Wiley, 1977).
[8] J. Sakurai and J. Napolitano, Modern Quantum Mechanics (Cambridge University Press, 2020).
[9] D. Bohm, Quantum theory (Courier Corporation, 2012).
[10] E. Schrödinger, “An Undulatory Theory of the Mechanics of Atoms and Molecules”, Phys. Rev. 28, 1049–1070 (1926).
[11] E. Schrödinger, “Quantisierung als eigenwertproblem”, Ann. Phys. (Leipzig) 384, 361–376 (1926).
[12] M. Born, “Quantenmechanik der stoßvorgänge”, Z. Phys. 38, 803–827 (1926).
[13] W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik”, Z. Phys. 43, 172–198 (1927).
[14] H. Everett, ““Relative State” Formulation of Quantum Mechanics”, Rev. Mod. Phys. 29, 454–462 (1957).
[15] J. A. Wheeler, “Assessment of Everett’s “Relative State” Formulation of Quantum Theory”, Rev. Mod. Phys. 29, 463–465 (1957).
[16] B. S. DeWitt, “Quantum mechanics and reality”, Physics Today 23, 30–35 (1970).
[17] B. S. DeWitt, “The Many-Universes Interpretation of Quantum Mechanics”, in The Many-Worlds Interpretation of Quantum Mechanics, edited by B. S. Dewitt and N. Graham (Princeton University Press,Princeton, 1973), pp. 167–218.
[18] E. P. Wigner, “The Problem of Measurement”, A. J. Phys. 31, 6–15 (1963).
[19] J. von Neumann, Mathematical foundations of quantum mechanics, Translated by R. T. Beyer, (Princeton Univ. Press, Princeton, 1955). The new edition, edited by N. A. Wheeler (Princeton Univ. Press, Princeton, 2018),
[20] W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical”, Rev. Mod. Phys. 75, 715–775 (2003).
[21] M. Mensky, Quantum measurements and decoherence: models and phenomenology, Vol. 110 (Springer Science & Business Media, 2013).
[22] E. Hecht, Optics (Pearson, 2012).
[23] T. Young, “The bakerian lecture: on the theory of light and colours”, Phil. Trans. R. Soc. London, 12–48 (1802).
[24] T. Young, A course of lectures on natural philosophy and the mechanical arts: in two volumes, Vol. 2 (Johnson, 1807).
[25] A. J. Fresnel, Œuvres Complètes d’Augustin Fresnel, Vol. 2 (H. de Senarmont, E. Verdet, et L. Fresnel, 1868).
[26] A. Einstein, “On a heuristic viewpoint concerning the production and transformation of light”, in The collected papers of Albert Einstein: Volume 3 (Princeton University Press, 1905).
[27] E. Whittaker, A History of the Theories of Aether and Electricity: Vol. I: The Classical Theories; Vol. II: The Modern Theories, 1900-1926, Vol. 1 (Courier Dover Publications, 1989).
[28] N. Bohr, “VI - Discussion with Einstein on Epistemological Problems in Atomic Physics”, in Foundations of Quantum Physics II (1933–1958), Vol. 7, edited by J. Kalckar, Niels Bohr Collected Works (Elsevier, 1996), pp. 339–381.
[29] J. A. Wheeler, “The“Past"and the“Delayed-Choice"Double-Slit Experiment”, in Mathematical Foundations of Quantum Theory, edited by A. Marlow (Academic Press, 1978), pp. 9–48.
[30] J.-S. Tang, Y.-L. Li, X.-Y. Xu, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, “Realization of quantum Wheeler’s delayed-choice experiment”, Nature Photonics 6, 600–604 (2012).
[31] V. Jacques, E Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental Realization of Wheeler’s Delayed-Choice Gedanken Experiment”, Science 315, 966–968 (2007).
[32] A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. O'Brien, “A Quantum Delayed-Choice Experiment”, Science 338, 634–637 (2012).
[33] W. M. Zhang, D. H. Feng, and R. Gilmore, “Coherent states: Theory and some applications”, Rev. Mod. Phys. 62, 867–927 (1990).
[34] M. W. Y. Tu and W. M. Zhang, “Non-markovian decoherence theory for a double-dot charge qubit”, Phys. Rev. B 78, 235311 (2008).
[35] J. Jin, M. W.-Y. Tu, W.-M. Zhang, and Y. Yan, “Non-equilibrium quantum theory for nanodevices based on the feynman–vernon influence functional”, New J. Phys. 12, 083013 (2010).
[36] C. U. Lei and W. M. Zhang, “A quantum photonic dissipative transport theory”, Annals of Physics 327, 1408–1433 (2012).
[37] H. L. Lai, P. Y. Yang, Y. W. Huang, and W. M. Zhang, “Exact master equation and non-markovian decoherence dynamics of majorana zero modes under gate-induced charge fluctuations”, Phys. Rev. B 97, 054508 (2018).
[38] W. M. Zhang, “Exact master equation and general non-markovian dynamics in open quantum systems”, Eur. Phys. J. Special Topics 227, 1849–1867 (2019).
[39] Y. W. Huang and W. M. Zhang, “Exact master equation for generalized quantum brownian motion with momentum-dependent system-environment couplings”, Phys. Rev. Res. 4, 033151 (2022).
[40] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev. 47, 777–780 (1935).
[41] N. Bohr, “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev. 48, 696–702 (1935).
[42] E. Schrödinger, “Discussion of probability relations between separated systems”, Mathematical Proceedings of the Cambridge Philosophical Society 31, 555–563 (1935).
[43] D. Bohm and Y. Aharonov, “Discussion of experimental proof for the paradox of einstein, rosen, and podolsky”, Phys. Rev. 108, 1070–1076 (1957).
[44] C. S. Wu and I. Shaknov, “The angular correlation of scattered annihilation radiation”, Phys. Rev. 77, 136–136 (1950).
[45] J. S. Bell, “On the einstein podolsky rosen paradox”, Physics Physique Fizika 1, 195–200 (1964).
[46] A. Aspect, P. Grangier, and G. Roger, “Experimental realization of einstein-podolsky-rosen-bohm gedankenexperiment: a new violation of bell’s inequalities”, Phys. Rev. Lett. 49, 91–94 (1982).
[47] A. Aspect, J. Dalibard, and G. Roger, “Experimental test of bell’s inequalities using time-varying analyzers”, Phys. Rev. Lett. 49, 1804–1807 (1982).
[48] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories”, Phys. Rev. Lett. 23, 880–884 (1969).
[49] S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories”, Phys. Rev. Lett. 28, 938–941 (1972).
[50] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of bell’s inequality under strict einstein locality conditions”, Phys. Rev. Lett. 81, 5039–5043 (1998).
[51] S. Weinberg, The quantum theory of fields, Vol. 1 (Cambridge University Press, 1995).
[52] M. E. Peskin, An introduction to quantum field theory (CRC press, 2018).
[53] E. Schrödinger, “Der stetige Übergang von der Mikro-zur Makromechanik”, Naturwissenschaften 14, 664–666 (1926).
[54] R. J. Glauber, “Coherent and incoherent states of the radiation field”, Phys. Rev. 131, 2766–2788 (1963).
[55] L. D. Faddeev, Gauge fields: an introduction to quantum theory (CRC Press, 2018).
[56] L. S. Schulman, Techniques and applications of path integration (Courier Corporation, 2012).
[57] L. D. Landau, “2 - THE DAMPING PROBLEM IN WAVE MECHANICS”, in Collected Papers of L.D. Landau, edited by D. T. HAAR (Pergamon, 1965), pp. 8–18.
[58] J. von Neumann, “Wahrscheinlichkeitstheoretischer aufbau der quantenmechanik”, Göttinger Nachrichten 1, 245 (1927).
[59] A. Politi, J. C. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics”, IEEE J. Quan tum Electron 15, 1673–1684 (2009).
[60] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, et al., “Quantum computational advantage using photons”, Science 370, 1460–1463 (2020).
[61] J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, et al., “Quantum circuits with many photons on a programmable nanophotonic chip”, Nature(London) 591, 54–60 (2021).
[62] R. Feynman and F. Vernon, “The theory of a general quantum system interacting with a linear dissipative system”, Ann. Phys. 24, 118–173 (1963).
[63] W.-M. Zhang and D. H. Feng, “Quantum nonintegrability in finite systems”, Physics Reports 252, 1–100 (1995).
[64] S. Helgason, Differential geometry, Lie groups, and Symmetric Spaces (Academic press, 1978).
[65]S.-K. Yang and W.-M. Zhang, “Emergence of entanglement and breakdown of causality in the quantum realm”, arXiv preprint arXiv:2403.09368 (2024)
[66] W.-M. Huang and W.-M. Zhang, “Nonperturbative renormalization of quantum thermodynamics from weak to strong couplings”, Phys. Rev. Res. 4, 023141 (2022).
[67] C. Viazminsky, “Necessary and sufficient conditions for a function to be separable”, Appl. Math. Comput. 204, 658–670 (2008).