| 研究生: |
陳嘉濱 Chen, Jia-Bin |
|---|---|
| 論文名稱: |
錸系矩形超分子之光譜電化學特性與應用 Spectroelectrochemical characterization and applications of rhenium-based rectangle supramolecules |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 矩形分子 、錸金屬 、奈米級聚苯胺 、粒子大小選擇性 、光譜電化學 、超分子 |
| 外文關鍵詞: | molecular rectangles, spectroelectrochemistry, rhenium metal, supramolecules, nanoscale polyaniline, size selectivity |
| 相關次數: | 點閱:57 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本篇論文對錸系矩形超分子進行其電化學、光譜學與光譜電化學等性質上之研究。這些錸金屬複合物,其結構式為[{(CO)3Re(μ-O C4H9)2}{Re(CO)3(μ-L)}]2其中L = 4,4’-bipyridine (bpy), pyrazine (pz), trans-1,2-bis(4-pyridyl)ethylene (bpe), 1,4-bis[2-(4-pyridyl)ethenyl]benzene (bpeb),展現了每個分子各自之配位橋基分子以及金屬多步的還原與氧化吸收峰。由變換不同含氮橋基配位分子得到連續兩個還原電位差值(ΔEpred (L))在不同選擇的試劑中有bpy (0.63V) > pz (0.31V) 以及 bpeb (0.54V) > bpe (0.27V)的趨勢,發現越短的配位橋基分子鏈(Re-N…N-Re)擁有較大的還原電位差值(ΔEpred (L))。當較負還原電位控制在超過-1.93V為金屬還原反應,於DMF系統下可觀測到電極表面有顏色變化發生(金黃色溶液中出現藍綠色)。
電子吸收光譜展現了配位橋基分子本身π-π*電子躍遷與金屬到配位橋基電荷轉移吸收 (MLCT) 波段。紫外光/可見光光譜電化學圖譜顯示分子的MLCT吸收波段明顯受電化學氧化還原反應影響,且含氧烷鏈橋基分子在這些光譜電化學程序進行時是穩定的。由L = pz分子的光譜圖顯示於DMF中當該化合物放置兩天後其MLCT吸收波段會消失。循環光譜伏安法用於製作吸收-波長-電位關係圖與DCVA (derivative cyclic voltabsorptogram) 並藉此推斷在電化學反應中的氧化還原物質產生種類。此外,由MLCT吸收波段能量與金屬及配位橋基分子氧化還原電位差值[Eabs(eV) vs. ΔE½(E½(Re0/Re+) -E½(L/L-•))]的關係可確立此實驗論證之正確性。
由R = C4H9, L = pz (d ~ 0.4nm ×0.7nm), bpy ( d ~ 0.4nm ×1.2nm) and R = C8H17, L = bpeb (d ~ 0.4nm ×2.1nm)等中性錸系矩形超分子組成的奈米孔洞薄膜於水溶液系統中穩定且於載體上的附著力強。電化學物質轉移實驗中以線性掃描伏安法描述,得到L = pz and bpy兩種超分子材料的薄膜具備了讓電活性分子或離子依照薄膜之奈米孔洞大小而可通過或抑制的粒子選擇性,然而對於L = bpeb and R = C8H17超分子所製備得到的分子薄膜,所有選擇的電活性分子或離子都可以通過而缺乏粒子大小選擇特性。而由薄膜擴散模型,供粒子大小選擇的電化學活性粒子於系統中穿透時的定量描述於此記錄並報導。
利用ITO導電玻璃上鍍[{(CO)3Re(μ-OC8H17)2}{Re(CO)3(μ-bpeb)}]2 超分子薄膜並搭配定電流之電化學合成可得到奈米級聚苯胺導電性高分子,其性質檢定可由紫外光/可見光光譜與傅力葉轉換紅外光光譜獲得,而由原子力電子顯微鏡 (AFM) 圖譜可觀測到大小約20至40 nm的奈米級聚苯胺。由AFM觀測鍍在ITO導電玻璃上[{(CO)3Re(μ-OC8H17)2}{Re(CO)3(μ-bpeb)}]2的薄膜可發現平滑的晶體表面,除此之外,也觀測到此薄膜由微小晶體連續且有次序的排列而成。
Abstract
Supramolecules of rhenium-based molecular rectangles are investigated into their electrochemical, spectroscopic and spectroelectrochemical properties in this dissertation. These Re complexes, [{(CO)3Re(μ-OR)2}{Re(CO)3(μ-L)}]2 where L = pyrazine (pz), 4,4’-bipyridine (bpy), trans-1,2-bis(4
-pyridyl)ethylene (bpe) and 1,4-bis[2-(4-pyridyl)ethenyl]benzene (bpeb), show multiple reduction and oxidation peaks corresponding to ligand (L) and metal sites respectively. The differences in the potentials between the two consecutive reduction reactions of L (ΔEpred (L)) show variations on changing L with a trend of bpy (0.63V) > pz (0.31V) and bpeb (0.54V) > bpe (0.27V) in different solvent. The shorter distance between the coordinating sites (Re-N…N-Re) has higher (ΔEpred (L)). When the metal reduction performs at the far negative potentials than -1.93V, the surface of electrode changes its color (bluish green in yellow solution) in DMF.
Electronic absorption spectra of the complexes possess ligand localized π-π* and Re based metal to ligand charge transfer (MLCT) bands. UV-Visible spectroelectrochemical spectra reveal that MLCT bands are sensitive to redox processes of these complexes and the oxo-bridging ligands are stable under spectroelectrochemical processes. The spectrum of the complex with L = pz exposing in the air for two days reveals that MLCT band disappears in DMF. Cyclic spectrovoltammetry is used to deduce absorbance-wavelength-potential profiles and differential cyclic voltabsorptograms (DCVAs) and to identify the redox species generated during the electrochemical reactions. Also, a correlation between the absorption energies of MLCT transitions and differences in potentials between metal and ligand based redox reactions [Eabs(eV) vs. ΔE½(E½(Re0/Re+) E½(L/L•))] is established.
The thin-films of nanoscale porosities comprising of neutral rhenium based molecular rectangles with R = C4H9, L = pz (d ~ 0.4nm ×0.7nm), bpy ( d ~ 0.4nm ×1.2nm) and R = C8H17, L = bpeb (d ~ 0.4nm ×2.1nm) are strongly adherent and stable in aqueous media. Linear sweep voltammetry for electrochemical transport experiments indicate that the materials of L = pz and bpy show membranelike permeation via pores or tunnels of nanoscale diameter is the primary mode of transport of molecular or ionic species through thin films and the transport-relevant pore or tunnel diameter is defined by the cavity dimensions for the component molecular rectangles. However, all electroactive species are able to pass through the thin-film of material with L = bpeb and R = C8H17. From membrane diffusion model, quantitative descriptions of the permeability of electroactive molecules or ions are also reported.
Nanoscale polyaniline was obtained by galvanostatic method of electrochemical polymerization on ITO coated a thin-film with complex of [{(CO)3Re(μ-OC8H17)2}{Re(CO)3(μ-bpeb)}]2. The characterization of polyaniline on ITO is obtained by using UV-Visible and FTIR spectra. About 20 to 40 nm of nanoscale polyaniline is observed from AFM images. By AFM images of thin-film ([{(CO)3Re(μ-OC8H17)2}{Re(CO)3(μ-bpeb)}]2) on ITO, the template roughness is showed. Besides this, the findings of significance from AFM study are simply that the film is continuous and microcrystalline.
參考文獻
1. F. Wohler, Poggendorfs Ann. Physik 12 (1828) 253.
2. R. B. Woodward, Pure Appl. Chem. 17 (1968) 519.
3. A. Eschenmoser, Quart. Rev. (1970) 24, 366;Chem. Soc. Rev. (1976) 5, 377;Nova Acta Leopoldina 55 (1982) 5.
4. J. M. Lehn, Angew. Chem. (1988) 100, 91;Angew. Chem. Int. Ed. Engl. 27 (1988) 89.
5. P. Ehrlich, Studies on Immunity, Wiley, New York (1906).
6. E. Fischer, Ber. Deutsch. Chem. Ges. 27 (1894) 2985.
7. A. Werner, Zeitschr. Anorg. Chem. 3 (1893) 267.
8. J. M. Lehn, Struct. Bonding 16 (1973) 1.
9. J. M. Lehn, Pure Appl. Chem. 50 (1978) 871.
10. M. Muthukumar, C. K. Ober, Science 277 (1997) 1225.
11. J. M. Lehn, Supramolecular Chemistry-Concepts and Perspectives, VCH, New York (1995).
12. Yu. A. Ovchinnikov, V. T. Ivanov, A. M. Skorb, Membrane Active Complexones, Elsevier, New York (1974);B. C. Pressman, Annu. Rev. Biochem. (1976).
13. C. J. Pedersen, J. Am. Chem. Soc. 89 (1967) 7017.
14. C. J. Pedersen, Angew. Chem. (1988) 100, 1053;Angew. Chem. Int. Ed. Engl. 27 (1988) 1053.
15. R. V. Slone, K. D. Benkstein, S. Belanger, J. T. Hupp, I. A. Guzei, A. L. Rheingold, Coord. Chem. Rev. 171 (1998) 221.
16. S. Belanger, J. T. Hupp, C. L. Stern, R. V. Slone, D. F. Watson, T. G. Carrell, J. Am. Chem. Soc. 121 (1999) 557.
17. C. Piguet, J-C. G. Bunzli, G. Bernardinelli, G. Hopfgartner, A. F. Williams, J. Alloy. Compd. 225 (1995) 324.
18. M. Fujita, K. Ogura, Coord. Chem. Rev. 148 (1996) 249.
19. W. Paw, S. D. Cummings, M. A. Mansour, W. B. Connick, D. K. Geiger, R. Eisenberg, Coord. Chem. Rev. 171 (1998) 125.
20. L. Li, F. N. Castellano, I. Gryczynski, J. R. Lakowicz, Chem. Phys. Lipids 99 (1999) 1.
21. H. Oshio, T. Ito, Coord. Chem. Rev. 198 (2000) 329.
22. J. A. R. Navarro, B. Lippert, Coord. Chem. Rev. 222 (2001) 219.
23. Y. Kim, F. W. M. Vanhelmont, C. L. Stern, J. T. Hupp, Inorg. Chim. Acta 318 (2001) 53.
24. B. Lippert, Coord. Chem. Rev. 200-202 (2000) 487.
25. T. D. Westmoreland, H. L. Bozec, R. W. Murray, T. J. Meyer, J. Am. Chem. Soc. 105 (1983) 5952.
26. W. E. Geiger, N. V. Order-Jr., D. T. Pierce, T. E. Bitterwolf, A. L. Rheingold, N. D. Chasteen, Organometallics 10 (1991) 2403.
27. K. D. Benkstein, J. T. Hupp, C. L. Stern, J. Am. Chem. Soc. 120 (1998) 12982.
28. T. Kinoshita, J. Photoch. Photobio. B 42 (1998) 12.
29. O. T. Ikkala, L. O. Pietila, P. Passiniemi, T. Vikki, H. Osterholm, L. Ahjopalo, J. E. Osterholm, Synth. Mat. 84 (1997) 55.
30. H. Kosonen, J. Ruokolainen, M. Knaapila, M. Torkkeli, K. Jokela, R. Serimaa, G. T. Brinke, W. Bras, A. P. Monkman, O. Ikkala, Macromolecules 33 (2000) 8671.
31. J. Ruokolainen, H. Eerikainen, M. Torkkeli, R. Serimaa, M. Jussila, O. Ikkala, Macromolecules 33 (2000) 9272.
32. J. Hartikainen, M. Lahtinen, M. Torkkeli, R. Serimaa, J. Valkonen, K. Rissanen, O. Ikkala, Macromolecules 34 (2001) 7789.
33. C. J. Pedersen, J. Am. Chem. Soc. 89 (1967) 2495.
34. H. M. Powell, J. Chem. Soc. (1948) 61.
35. F. Blau, Ber. Dtsch. Chem. Ges. 21 (1888) 1077.
36. R. G. Pearson, J. Am. Chem. Soc. 85 (1963) 3533.
37. R. G. Pearson, Science. 151 (1966) 172.
38. B. Saville, Angew. Chem. 79 (1967) 966.
39. F. Krohnke, Synthesis. (1976) 1.
40. E. Hammarsten, Biochem. Z. 144 (1924) 383.
41. A. Werner, Z. Anorg. Chem. 3 (1893) 267.
42. M. Fujita, J. Yakazi, K. Ogura, J. Am. Chem. Soc. 112 (1990) 5645.
43. M. Fujita, S. Nagao, M. Iida, K. Ogura, J. Am. Chem. Soc. 115 (1993) 1574.
44. M. Fujita, J. Yakazi, K. Ogura, Tetrahedron Lett. 32 (1991) 5589.
45. M. Fujita, J. Yakazi, K. Ogura, Chem. Lett. (1991) 1031.
46. P. J. Stang, D. H. Cao, J. Am. Chem. Soc. 116 (1994) 4981.
47. P. J. Stang, K. Chen, A. M. Arif, J. Am. Chem. Soc. 117 (1995) 8973.
48. P. J. Stang, D. H. Cao, S. Saito, A. M. Arif, J. Am. Chem. Soc. 117 (1995) 6273.
49. P. J. Stang, B. Olenyuk, J. Fan, A. M. Arif, Organometallics 15 (1996) 904.
50. P. J. Stang, B. Olenyuk, Angew. Chem. Int. Ed. Engl. 35 (1996) 732.
51. P. J. Stang, N. E. Persky, J. Chem. Soc. Chem. Commun. (1997) 77.
52. J. A. Whiteford, C. V. Lu, P. J. Stang, J. Am. Chem. Soc. 119 (1997) 2524.
53. P. J. Stang, D. H. Cao, K. C. Chen, G. M. Gray, D. C. Muddiman, R. D. Smith, J. Am. Chem. Soc. 119 (1997) 5163.
54. P. J. Stang, J. Fan, B. Olenyuk, J. Chem. Soc. Chem. Commun. (1997) 1453.
55. R. V. Slone, D. I. Yoon, R. M. Calhoun, J. T. Hupp, J. Am. Chem. Soc. 117 (1995) 11813.
56. R. V. Slone, J. T. Hupp, C. L. Stern, T. E. Albrecht-Schmitt, Inorg. Chem. 35 (1996) 4096.
57. R. V. Slone, J. T. Hupp, Inorg. Chem. 36 (1997) 5422.
58. R. V. Slone, K. D. Benkstein, S. Belanger, J. T. Hupp, I. A. Guzei, A. L. Rheingold, Coord. Chem. Rev. 171 (1998) 221.
59. W. H. Leung, J. Y. K. Cheng, T. S. Hun, C. M. Che, W. T. Wong, K. K. Cheung, Organometallics 15 (1996) 1497.
60. W. C. Kalb, Z. Demidowicz, D. M. Speckmann, C. Knobler, R. G. Teller, M. F. Hawthorne, Inorg. Chem. 21 (1982) 4027.
61. P. M. Stricklen, E. J. Volcko, J. G. Verkade, Inorg. Chem. 22 (1983) 2494.
62. M. Fujita, J. Yakazi, K. Ogura, Bull. Chem. Soc. Jpn. 69 (1996) 1471.
63. P. J. Stang, B. Olenyuk, Acc. Chem. Soc. 30 (1997) 502.
64. D. H. Cao, K. C. Chen, J. Fan, J. Manna, B. Olenyuk, J. A. Whiteford, P. J. Stang, Pure Appl. Chem. 69 (1997) 1979.
65. B. Olenyuk, A. Fechtenkotter, P. J. Stang, J. Chem. Soc. Dalton Trans. 11 (1988) 1707.
66. C. J. Jones, Chem. Soc. Rev. 27 (1998) 289.
67. K. D. Ley, C. E. Whittle, M. D. Bartberger, K. S. Schanze, J. Am. Chem. Soc. 119 (1997) 3423.
68. M. H. Keefe, R. V. Slone, J. T. Hupp, K. F. Czaplewski, R. Q. Snurr, C. L. Stern, Langmuir 16 (2000) 3964.
69. B. Douglas, D. McDaniel, J. Alexander, Concepts and Models of Inorganic Chemistry, John Wiley & Sons, Inc. (1994).
70. K. J. Brewer, M. Calvin, R. S. Lumpkin, J. W. Otvos, L. O. Spreer, Inorg. Chem. 28 (1989) 4446.
71. K. D. Benkstein, J. T. Hupp, C. L. Stern, Inorg. Chem. 37 (1998) 5404.
72. S. M. Woessner, J. B. Helms, Y. B. Shen, B. P. Sullivan, Inorg. Chem. 37 (1998) 5406.
73. T. Yoshimura, K. Umakoshi, Y. Sasaki, S. Ishizaka, H. B. Kim, N. Kitamura, Inorg. Chem. 39 (2000) 1765.
74. H. Hartmann, S. Berger, R. Winter, J. Fiedler, W. Kaim, Inorg. Chem, 39 (2000) 4977.
75. S. Berger, A. Klein, W. Kaim, Inorg. Chem, 37 (1998) 5664.
76. A. Klein, C. Vogler, W. Kaim, Organometallics 15 (1996) 236.
77. S. R. Cooper, M. Calvin, J. Am. Chem. Soc. 99 (1977) 6623.
78. R. Ruminski, R. T. Cambron, Inorg. Chem. 29 (1990) 1575.
79. B. Manimaran, T. Rajendran, Y. L. Lu, G. H. Lee, S. M. Peng, K. L. Lu, J. Chem. Soc., Dalton Trans. (2001) 515.