簡易檢索 / 詳目顯示

研究生: 林俞成
Lin, Yu-Cheng
論文名稱: 逆壓印製作導電高分子(PEDOT:PSS)電極圖案
Pattern Formation of PEDOT : PSS as Electrodes by Reversal Imprinting
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 76
中文關鍵詞: 導電高分子逆壓印
外文關鍵詞: reversal imprinting, conducting polymer
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機材料具備可撓曲特性且成本低廉,能夠以壓印技術快速製作有機高分子圖案,發展有機元件成本低廉,具量產潛力。本論文使用導電高分子[聚(3,4-二氧乙基塞吩) / 聚苯乙烯磺酸]為懸浮水溶液,在製作微米級圖案上有其困難之處,因此使用逆壓印製程─微轉印成形,控制濃度、溫度及壓力,再配合疏水基板,可製作出深寬比約為1:1且無殘留層的圖案。
    本論文開發新穎的逆壓印製程─溶劑輔助式逆壓印,控制溶劑(水)含量,可快速轉印導電高分子電極,所製作圖案之解析度可達2.5μm。由於導電高分子[聚(3,4-二氧乙基塞吩) / 聚苯乙烯磺酸]導電率僅約為0.25 S/cm,因此添加有機溶劑(DMSO)使其導電率提升至236±10 S/cm,如再添加金奈米棒,將可提升至376±15 S/cm。
    本論文亦轉印導電高分子電極製作電子元件,包括(1)滴定法沉積氧化鋅奈米棒於PEDOT : PSS電極間,製作二極體。(2)以導電高分子製作成電晶體源極與汲極,配合低阻值矽閘極與有機小分子─五環素半導體層,製作薄膜電晶體,電流開關比(Ion / Ioff)約為100,以及載子遷移率約為0.007cm2/V-s。另外混合導電高分子[聚(3,4-二氧乙基塞吩) / 聚苯乙烯磺酸]與氧化鋅奈米棒(重量比值為0.89)製作複合膜,可作為紫外光感測器。

    Organic devices with advantages of flexibility could make with pattern of organic polymer quickly by imprinting. It has low cost and potential of output for developing organic devices. The conducting polymer (PEDOT : PSS) is water soluble slightly, so it is difficult to make micropatterns by photolithography process. We use reversal imprinting – microtransfer molding to prepare conducting polymeric patterns without residual layer with aspect ratio about 1:1 under appropriate conditions of polymeric concentration, imprinting temperature, and pressure to avoid scaling pattern.
    This thesis also shows a kind of novel reversal imprinting – solvent assisted reversal imprinting. We only control the content of solvent (water) precisely to be able to transfer conducting polymeric patterns onto substrate quickly and effectively. The resolution of conducting polymeric patterns can achieve the size of 2.5μm. The conductivity of bare PEDOT : PSS is enhanced from 0.25 to 236±10 S/cm through organic solvent addition. The conductivity of solvent – PEDOT : PSS is further enhanced from 236±10 to 376±15 S/cm as added with Au nanorods.
    The transferred conducting polymeric patterns have been demonstrated for applications : (1) drop deposition of ZnO nanorods between the transferred conducting polymeric patterns to fabricate Schottky diode, (2) combine pentacene-based TFT with SiO2 as gate dielectric layer to have Ion/Ioff of 100 and mobility of 0.007cm2/V-s. Besides, we use PEDOT : PSS / ZnO nanorods composite film to fabricate UV light sensor.

    總 目 錄 摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 總目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 文獻回顧 3 2-1 奈米壓印 3 2-1-1 奈米壓印的種類 4 2-2 導電高分子 6 2-2-1 導電高分子發展 10 2-2-2 導電高分子導電機制 12 2-2-3 導電高分子─聚(3,4-二氧乙基塞吩) / 聚苯乙烯磺酸 20 2-2-4 聚(3,4-二氧乙基塞吩) / 聚苯乙烯磺酸的應用 21 第三章 實驗方法與步驟 25 3-1 化學藥品 25 3-2 實驗流程 26 3-2-1 逆壓印─微轉印成形 26 3-2-2 溶劑輔助式逆壓印 28 3-2-3 二極體與薄膜電晶體元件製備 30 3-3 材料分析與電量測 31 3-3-1 導電高分子轉印圖案的形態與結構 31 3-3-2 導電高分子導電率 31 3-3-3 導電高分子粒徑 32 3-3-4 二極體與薄膜電晶體電性 32 3-3-5 導電高分子(PEDOT : PSS)/氧化鋅奈米棒複合膜電性 32 第四章 結果與討論 33 4-1以逆壓印–微轉印成形製作導電高分子圖案 33 4-1-1 懸浮液濃度導致魚鱗結構 33 4-1-2 水蒸氣導致魚鱗結構 36 4-1-3 PDMS模板通道寬度與魚鱗結構關係 39 4-1-4 魚鱗結構消除 40 4-1-6 壓力導致魚鱗結構 43 4-2 以逆壓印–微轉印成形製作無殘留層導電高分子圖案 44 4-3 以溶劑輔助式逆壓印製作導電高分子圖案 45 4-3-1 旋轉塗佈 48 4-3-2 液滴被覆 53 4-4 電性量測 62 4-4-1導電高分子(PEDOT : PSS)導電率 62 4-4-2 二極體 65 4-4-3 薄膜電晶體 67 4-5 導電高分子(PEDOT : PSS)/氧化鋅奈米棒複合膜 69 第五章 結論 71 參考文獻 73

    [1] D. W. Li; L. J. Guo, Journal of Physics D-Applied Physics.41(10) (2008)
    [2] J. Z. Wang; Z. H. Zheng; H.W. Li; W. T. S. Huck; H. Sirringhaus, Nature Materials. 3(3), 171-176 (2004)
    [3] S. Y. Chou; P. R. Krauss; P .J. Renstrom. Applied Physics Letter. 67(21), 3114-3116 (1995)
    [4] K. Pfeiffer; A. Fink; G. Gruetzner; G. Bleidiessel; H. Schulz; H. Scheer, Microelectronic Engineering. 57–8, 381–387 (2001)
    [5] P. Ruchhoeft; M. Colburn; B. Choi; H. Nounu; S. Johnson; T. Bailey; S. Damle; M. Stewart; J. Ekerdt; S. V. Sreenivasan; J. C. Wolfe; C. G. Willson, Journal of Vacuum Science & Technology B. 17(6), 2965-2969 (1999)
    [6] Y. N. Xia; G. M. Whitesides, Annual Review of Materials Science. 28, 153-184 (1998)
    [7] J. Roncali, Chemical. Reviews. 92(4), 711-738 (1992)
    [8] H Shirakawa; E. J. Louis; A. G. Macdiarmid; C. K. Chiang; A. J. Heeger, Journal of The Chemical Society-Chemical Communications. (16), 578-580 (1977)
    [9] K. Hyodo, Electrochemica Acta. 39(2), 265-272 (1994)
    [10] C. K. Chiang; C. R. Fincher; Y. W. Park; A. J. Heeger; H. Shirakawa; E. J. Louis; S. C. Gau; A. G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977)
    [11] K. Kral, Ceskoslovensky Casopis Pro Fysiku Sekce A. 25(5), 522-523 (1975)
    [12] M. G. Kanatzids, “Conductive polymers”, C&EN. 3, 36 (1990)
    [13] K. Y. Jen; G. G. Miller; R. L. Elsenbaumer, J. Chem. Soc. Chem. Commun, 1346 (1986)
    [14] J. Roncali; R. Garreau; D. Delabouglise; F. Garnier; M. Lemaire; Synth. Met. 28, C341 (1989)
    [15] A. Angli; Gazz. Chim, Ital. 46, II 279 (1916)
    [16] A. Dall Olio; G. Dascola; V. Varacca; V. Bocchi, Acad. Sci. Ser. 433, C267 (1968)
    [17] H. Naarmann, “Structure and conductivity of organic polymers”,
    Angew. Chem. Int. Ed. 8, 915 (1969)
    [18] H. Shirakawa; S. Ikeda, Polymer. 2, 231 (1971)
    [19] J. H. Burroughes; D. D. C. Bradley; A. R. Brown; R. N. Marks; K. Mackay; R. H. Friend; P. L. Burns; A. B. Holmes, Nature. 347, 539-541 (1990)
    [20] C. Kittel, “Introduction to Solid State Physics”. 6th ed., John Wiley & Son, Singapore. (1986)
    [21] A. F. Diaz; J. Bargon in Handbook of Conducting Polymers, T. A. Skotheim Ed, Marcel Decker: New York, 1, 82 (1986).
    [22] R. R. Chance; D. S. Boudreaux; J. L. Bredas; R. Silbey in Handbook of Conducting Polymers, T. A. Skotheim Ed, Marcel Decker: New York, 2, 825 (1986)..
    [23] K. Y. Jen; G. G. Miller; R. L. Elsenbaumer, J. Chem. Soc, Chem. Commun. 1346 (1986)
    [24] S. D. D. V. Rughooputh; M. Nowak; S. Hotta; A. J. Heeger; F. Wudl, Synth. Met. 21, 41 (1987)
    [25] 張淑美, 科學月刊,第三十二卷第二期, 108 (2001)
    [26] G. Heywang; F. Jonas, Adv. Mater. 4, 116–118 (1992)
    [27] C. Gustaffsson; B. Liedberg; O. Inganas, Solid State Ionics. 69, 145 (1994)
    [28] H. C. Starck company-product search
    [29] F. Jonas and G. Heywang, Electrochimica Acta. 39, 8/9, 1345 (1994)
    [30] J. H. Niu; R. N. Hua; W. L. Li; M. T. Li; T. Z. Yu, Journal of Physics D-Applied Physics. 39(11) 2357-2360 (2006)
    [31] Y. Saito; N. Fukuri; R. Senadeera; T. Kitamura; Y. Wada; S. Yanagida, Electrochemistry Communications. 6(1) 71-74 ( 2004)
    [32] F. Jonas and J. T. Morrison, Synth. Met., 85, 1–3, 1397 (1997)
    [33] K. Ueno; L. Dominey; R. S. Alwitt, Electrochemistry. 75(8), 622-627 (2007)
    [34] H. Okuzaki; M. Ishihara and S. Ashizawa, Synth. Met. 137, 1–3, 947 (2003)
    [35] Y. Huang; W. Zhou; K. J. Hsia; E. Menard; Jang-Ung Park; J. A. Rogers and G Andrew, Alleyne. Langmuir. 21, 17, 8058-8068 (2005)
    [36] J. Ouyang; Q. Xu; C. W. Chu; Y Yang; G. Li; J. Shinar, Polymer 45. 8443–8450 (2004)
    [37] H-Y Wu; H-C Chu; T-J Kuo; C-L Kuo; H. Huang, Chem. Mater. 17, 6447-6451 (2005)
    [38] O. Harnack; C. Pacholski; H. Weller; A. Yasuda; J. M. Wessels, Nano Lett. 3, 1097 (2003)
    [39] G. Wang, J. Swensen; D. Moses; Alan J. Heeger, Journal of Applied Physics. 93, 10 (2003)
    [40] N. Sakai; G. K. Prasad; Y. Ebina; K. Takada and T. Sasaki, Chem. Mater. 18, 3596-3598 (2006)
    [41] K. Stephan; R. Knud, Jourmal of Materials Chemistry. 15, 2077-2088 (2005)

    下載圖示 校內:2013-07-29公開
    校外:2013-07-29公開
    QR CODE