簡易檢索 / 詳目顯示

研究生: 廖世欽
Liao, Shih-Chin
論文名稱: 基因演算法在具時間週期性需求的一維剩餘物料裁切問題之研究
A Study on Solving 1D-RCSP of Periodic-time Orders Using Genetic Algorithm
指導教授: 徐立群
Shu, Lih-Chyun
學位類別: 碩士
Master
系所名稱: 管理學院 - 會計學系
Department of Accountancy
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 73
中文關鍵詞: 一維剩餘物料裁切問題基因演算法時間週期性
外文關鍵詞: One-Dimensional Residual Cutting Stock Problem, Genetic Algorithm, Periodic-Time
相關次數: 點閱:87下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究範疇屬於一維剩餘物料裁切問題(RCSP),並著重於裁切工廠在連續生產週期時廢料與相關裁切成本的最小化。其中,訂單需求具有時間週期性,不同年度但同季節的需求分佈會有相似的特性,因此本研究以去年的訂單需求來預測今年的訂單需求。本研究深入探討裁切過程中如何調整不標準原料的長度及數量,能有助於未來裁切時廢料的減少,並促使整個連續裁切過程產生的廢料及裁切成本為最小。在每次安排裁切時,儘量使不標準原料的長度與去年需求長度相同,未來在進行裁切時這些不標準原料便不會有廢料產生,進而減少裁切的總成本。實作方面,則是以基因演算法來求解本研究所設定的問題。

    The main idea of this thesis is related to Residual Cutting Stock Problem (RCSP), and we focus on minimizing trim loss and cutting costs in factory subsequent process. Since the demands for orders are periodical, that is, the distributions of orders are similar in seasons among different years, our study explores how to adjust the length and amount of residual stock which is conducive to trim loss and minimize cost in the entire continuous cutting process by using last year’s orders to predict subsequent year’s orders. When arranging cutting plans, we assume that the length and orders of residual stocks are as much as possible the same and these residual stocks will never produce trim loss in subsequent cutting process, thus reducing the whole cutting costs. In problem solving, we use genetic algorithm to solve the problem proposed by this thesis.

    第一章 緒論 1 第一節 研究背景 1 第二節 研究動機與目的 2 第三節 研究範圍與方法 4 第四節 論文架構 6 第二章 文獻探討 7 第一節 裁切與包裝問題分類法則 7 第二節 物料裁切問題的分類 12 第三節 一維物料裁切問題 14 第四節 連續性一維物料裁切問題 17 第五節 具時間週期性的連續不確定需求之一維剩餘物料裁切問題 20 第六節 基因演算法 24 第三章 具時間週期性需求的一維剩餘物料裁切問題模型 29 第一節 問題定義 30 第二節 不標準原料評估機制 34 第四章 P-1D-RCSP的基因演算法 36 第一節 初始 36 第二節 評估 37 第三節 選擇 41 第四節 交配 41 第五節 突變 44 第六節 取代 44 第七節 終止 45 第五章 實驗結果 46 第一節 不同單位運送成本p_r情形下總成本的比較 46 第二節 W參數的設定 54 第三節 實驗小結 63 第六章 結論 64 參考文獻 65 附錄 實驗資料 69

    中文
    [1]徐家賢,2010,《具時間週期性的連續隨機需求之一維剩餘物料裁切問題之研究》,長榮大學資訊管理研究所碩士論文。
    [2]林豐澤,2005,《演化式計算上篇:演化式演算法的三種理論模式》,智慧科技與應用統計學報(3卷1期):1-28。
    [3]林豐澤,2005,《演化式計算下篇:基因演算法以及三種應用實例》,智慧科技與應用統計學報(3卷1期):29-56。
    [4] 賴忠德,2010,《最佳化型鋼構件裁切之研究》,中央大學土木工程學研究所碩士論文。
    [5]張瀚文,2005,《鋼筋裁切順序最佳化模式》,成功大學土木工程學研究所碩士論文。
    [6]沈宇晟,2005,《鋼筋裁切問題之啟發式解法》,成功大學土木工程學研究所碩士論文。
    [7]蘇明健,2009,《應用啟發式演算法求解多目標型鋼切割計劃之研究》,中山大學資訊管理研究所在職專班碩士論文。
    [8]行政院公共工程委員會 http://www.pcc.gov.tw/

    英文
    [9]Chen C.L., Hart S.M., and Tham W.M. 1996. “A simulated annealing heuristic for the one-dimensional cutting stock problem.” European Journal of Operational Research 93: 522-535.
    [10]Chu P.C., and Beasley J.E. 1998. “A genetic algorithm for the multidimensional knapsack problem.” Journal of Heuristics 4: 63-86.
    [11]Chang F., et al. 2008. “Bigtable: A distributed storage system for structured data.” ACM Transactions on Computer Systems(TOCS) 26.
    [12]Dyckhoff H. 1990. “A typology of cutting and packing problems.” European Journal of Operational Research 44: 145-159.
    [13]Deck G., and Scheuer T. 1990. “Threshold Accepting: A general purpose optimization algorithm appearing superior to simulated annealing.” Journal of Computational Physics 90: 161-175.
    [14]Dean J., and Ghemawat S. 2008. “MapReduce: simplified data processing on large clusters. ”Communications of the ACM 51:107-113.
    [15]Furini F., Malaguti E., Duran R.M., Persiani A., and Toth P. 2012. “A column generation heuristic for the two-dimensional two-staged guillotine cutting stock problem with multiple stock size.” European Journal of Operational Research 218: 251-260.
    [16]Gau T., and Wascher G. 1995. “CUTGEN1: A problem generator for the standard one-dimensional cutting stock problem.” European Journal of Operational Research 84: 572-579.
    [17]Gilmore P.C., and Gomory R.E. 1961. “A linear programming approach to the cutting-stock problem.” Operational Research 9: 849-859.
    [18]Gilmore P.C., and Gomory R.E. 1963. “A linear programming approach to the cutting-stock problem part II.” Operational Research 11: 864-888.
    [19]Gradisar M., Kljajic M., Resinovic G., and Jesenko J. 1999. “A sequential heuristic procedure for one-dimensional cutting.” European Journal of Operational Research 114: 557-568.
    [20]Gradisar M., Resinovic G., and Kljajic M. 2002. “Evaluation of algorithms for one-dimensional cutting.” Computers & Operations Research 29: 1207-1220.
    [21]Ghemawat S., Gobioff H., and Leung S.T. 2003. “The Google file system.” ACM SIGOPS Operating Systems Review 37: 29-43.
    [22]Holland H. 1975. “Adaptation in natural and artificial systems.” The University of Michigan Press.
    [23]Hinterding R., and Khan L. 1995. “Genetic algorithms for cutting stock problems: With and without contiguity.” in Progress in Evolutionary Computation 9: 166-186.
    [24] Iori M. 2005. “Metaheuristic algorithms for combinatorial optimization problems.” 4OR:A Quarterly Journal of Operations Research 3: 163-166.
    [25]Liang K.H., Yao X., Newton C., and Hoffman D. 2002. “A new evolutionary approach to cutting stock problems with and without contiguity.” Computers & Operations Research 29: 1641-1659.
    [26]Levine J., and Ducatelle F. 2004. “Ant colony optimization and local search for bin packing and cutting stock problems.” Journal of the Operational Research Society 55: 705-716.
    [27]Macedo R., Alves C., and Valerio de Carvalho J.M. 2010. “Arc-flow model for the two-dimensional guillotine cutting stock problem.” Computers & Operations Research 37: 991-1001.
    [28]Rechenberg I. 1965. “Cybernetic solution path of an experimental problem.” Royal Aircraft Establishment Translation 1122.
    [29]Reinertsen H., and Vossen T.W.M. 2010. “The one-dimensional cutting stock problem with due dates.” European Journal of Operational Research 201: 701-711.
    [30]Trkman P., and Gradisar M. 2007. “One-dimensional cutting stock optimization in consecutive time periods.” European Journal of Operational Research 179: 291-301.
    [31]Wäscher G., Hauner H., and Schumann H. 2007. “An improved typology of cutting and packing problems.” European Journal of Operational Research 183: 1109-1130.
    [32]Zheng W., Ren P., Ge P., Qiu Y., and Liu Z. 2012. “Hybrid heuristic algorithm for two-dimensional steel coil cutting problem.” Computers & Industrial Engineering 62: 829-838.

    下載圖示 校內:2016-06-26公開
    校外:2016-06-26公開
    QR CODE