簡易檢索 / 詳目顯示

研究生: 陳雍智
Chen, Yung-Chih
論文名稱: 鏑含量對Nd0.1Sr0.9TiO3塊材之製備及其熱電性質之研究
Preparation and thermoelectric properties of doping Dy into Nd0.1Sr0.9TiO3 bulk materials
指導教授: 黃啟祥
Hwang, Chii-Shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 85
中文關鍵詞: 熱電材料鈦酸鍶固相反應法共摻雜
外文關鍵詞: Thermoelectric materials, SrTiO3, co-doping, solid-state reaction
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電材料為一種能將熱能與電能相互轉換的功能性材料,能夠將廢熱回收再利用,對於節能減碳與能源回收方面有很大的幫助。鈦酸鍶在高溫下具有高溫化學穩定性與低毒性的優勢。相較於其他氧化物熱電材料,鈦酸鍶擁有較高的Seebeck係數,易於透過摻雜來提升載子濃度,進而提升電傳導率。因此異價摻雜的鈦酸鍶塊材為一種具有發展前途的N型熱電材料。
    相較於單一摻雜鈦酸鍶,共摻雜的鈦酸鍶能同時擁有摻雜兩種不同元素的性質,因此能同時維持好的導電性並減少其熱傳導性。而兩種元素在鈦酸鍶中的固溶極限也會影響材料內部的微觀結構與熱電性質。
    本研究檢討釹、鏑共摻雜鈦酸鍶之熱電性質,實驗是固定釹之摻雜量而改變鏑之摻雜量,以固相合成法製備Nd0.1Sr0.9-xDyxTiO3 (x = 0, 0.01, 0.03, 0.05, 0.07, 0.09) 粉末,經冷均壓成形後,於1500 ℃還原氣氛中燒結6小時形成塊材,塊材之結晶相及顯微結構是以XRD及SEM分析,而熱電性質之量測範圍為303~673 K。
    結果顯示合成粉體除鈦酸鍶主相外,Dy0.07與Dy0.09試樣亦含有少量第二相Dy2Ti2O7。粉體經燒結成塊材後僅Dy0.09試樣含有第二相Dy2Ti2O7,燒結塊材之相對密度介於92~96 %。
    各塊材之電傳導率皆是隨溫度之增加呈現先增後減的趨勢,其電傳導行為是由半導體型轉成金屬型。而隨Dy含量越多,電傳導率有提升之趨勢,但過多第二相Dy2Ti2O7也會使電傳導率些微降低。隨Dy含量越多,塊材的Seebeck係數絕對值有減少之趨勢,所有試樣均為N型半導體之特性。綜合上述電傳導率與Seebeck係數後,經過計算,Dy0.07試樣於623 K時,具有最高之功率因子為1100 μW/mK2。
    熱傳導率方面,隨Dy的摻雜量增加,熱傳導率隨之減少。Dy造成鈦酸鍶的晶格扭曲程度越大,越能降低晶格熱傳導率。另外第二相Dy2Ti2O7亦會造成熱傳導率的減少,在所有塊材試樣中,Dy0.09試樣於673 K所量測到的熱傳導率最低,為3.91 W/mK。
    綜合各項熱電性質後計算試樣之ZT值,結果顯示Nd及Dy共摻雜能夠有效提升鈦酸鍶的熱電性質,Dy0.07試樣具有最佳之ZT值,於673 K為0.18,此值相較於單一摻雜Nd的Dy0.00試樣,ZT值提升了約80 %。

    Doped SrTiO3 materials have been a promising n-type thermoelectric material. Compared with single-doped SrTiO3, co-doped SrTiO3 could simultaneously possess two different properties, thereby maintaining good electrical conductivity and reducing thermal conductivity. To improve the thermoelectric properties of SrTiO3, Nd and Dy were doped in SrTiO3 in this study. Nd0.1Sr0.9-xDyxTiO3 (x=0~0.09) powders were prepared via a traditional solid state reaction. The powders were formed and sintered at 1500 ℃ for 6 hours under a reducing atmosphere of 5 vol % hydrogen in argon. The crystal structures and microstructures were observed by XRD and SEM. Thermoelectric properties were measured from 303 to 673 K. The crystal structure of powders was mainly cubic SrTiO3. and there was the minor phases Dy2Ti2O7 observed in the Dy0.09 bulk sample because the doping amount of Dy exceeds solid solution limit of SrTiO3. The relative density of the sintered bulk is between 92% and 96%.With the increasing amounts of Dy, electrical conductivity was enhanced and Seebeck coefficient decreased. However, the minor phase Dy2Ti2O7 lead to the decrease of electrical conductivity for Dy0.09 sample. All samples were characterized by n-type semiconductor-like behavior. The maximum value of power factor was 1100 μW/mK2 at 623K for Dy0.07 sample. In terms of thermal conductivity, as the doping amount of Dy increases, the thermal conductivity decreases, and the lattice distortion of SrTiO3 increases, which can effectively reduce the lattice thermal conductivity. In addition, the second phase Dy2Ti2O7 also caused a decrease in thermal conductivity. Among all the bulk samples, the Dy0.09 sample had the lowest thermal conductivity measured at 673 K, which was 3.91 W/mK.The results show that the co-doping of Nd and Dy can effectively improve the thermoelectric properties of SrTiO3. The Dy0.07 sample has the best ZT value, which is 0.18 at 673 K. This value increases about 80% compared to the single doped Dy0.00 sample.

    中文摘要 I Extended Abstract III 表目錄 XVIII 圖目錄 XIX 第一章 緒論 1 1-1 前言 1 1-2 實驗動機目的及策略 3 第二章 文獻回顧 5 2-1基本熱電效應簡介 5 2-1-1 熱電效應 5 2-1-2 熱電性質與能源轉換效率 7 2-2 熱電效應的發展及應用 8 2-3 提升熱電性質之方法 10 2-4 熱電材料分類 13 2-4-1 金屬系統熱電材料 13 2-4-2 陶瓷熱電材料 15 2-5 氧化物陶瓷熱電材料 16 2-5-1 P型氧化物 16 2-5-2 N型氧化物 18 2-6 鈦酸鍶的結構探討與研究動態 19 2-6-1鈦酸鍶材料的常見製備方法 20 2-7 鈦酸鍶的燒結特性相關研究 23 2-8 共摻雜對鈦酸鍶熱電性質影響之相關文獻 26 第三章 實驗方法與步驟 44 3-1 實驗用藥品及原料 44 3-2 實驗流程 44 3-3 材料性質之分析 45 3-3-1 粉體及燒結體之結晶相鑑定 45 3-3-2 燒結體密度之量測 45 3-3-3 顯微結構分析 46 3-4 燒結體熱電性質之分析 46 3-4-1 電傳導率量測 46 3-4-2 Seebeck係數量測 47 3-4-3 熱傳導率量測 47 第四章 結果與討論 52 4-1 粉體之相鑑定及顯微結構 52 4-2 塊材之相鑑定及顯微結構 52 4-3 塊材之熱電性質 55 4-3-1 電傳導率 55 4-4-2 Seebeck 係數 57 4-4-3 Power factor 58 4-4-4 熱傳導率 58 4-4-5 ZT值 60 第五章 結論 75 參考文獻 76

    [1] D.M. Rowe, CRC handbook of thermoelectrics, First ed., CRC press, (1995).
    [2] T.M. Tritt, M.A. Subramanian, Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View, MRS Bulletin, 31, 188-198 (2011).
    [3] Z. Lu, H. Zhang, W. Lei, D.C. Sinclair, and I.M. Reaney, High-Figure-of-Merit Thermoelectric La-Doped A-Site-Deficient, American Chemical Society, 48, 925-935 (2015).
    [4] S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, and K. Koumoto, Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature, Applied Physics Letters, 87, 092-108 (2005).
    [5] H. Wang, W. Su, J. Liu, C. Wang, Recent development of n-type perovskite thermoelectrics , Journal of Materiomics, 2, 225-236 (2016).
    [6] D. Liua, Y. Zhanga, H. Kanga, J. Lia, Z. Chena, T. Wang, Direct preparation of La-doped SrTiO3 thermoelectric materials by mechanical alloying with carbon burial sintering, Journal of the European Ceramic Society, 38, 807-811 (2018).
    [7] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3, Nat Mater, 6, 129-134 (2007).
    [8] M.T. Buscaglia, F. Maglia, U. Anselmi-Tamburini, D. Marré, I. Pallecchi, A. Ianculescu, G. Canua, M. Viviani , M. Fabrizio,V. Buscaglia, Effect of nanostructure on the thermal conductivity of La-doped SrTiO3 ceramics, Journal of the European Ceramic Society, 34, 307–316 (2014).
    [9] J.B. Li, J. Wang, J.F. Li, Y. Li, H. Yang, H.Y. Yu, X.B. Ma, X. Yaer, L. Liu, L. Miao, Broadening the temperature range for high thermoelectric performance of bulk polycrystalline strontium titanate by controlling the electronic transport properties, Journal of Materials Chemistry C, 6, 7594-7603 (2018).
    [10] T.Q. Thong, L.T.T Huong, N.T Tinh, Investigation of the Influence of Singly and Dually Doping Effect on Scattering Mechanisms and Thermoelectric Properties of Perovskite Type STO, Materials Transactions, 56, 1365-1369 (2015).
    [11] J. Wang, B.Y. Zhang, H.J. Kang, Y. Li, X. Yaer, J.F. Li, Q. Tan, S. Zhang, G.H. Fan, C.Y. Liu, L. Miao, D. Nan, T.M. Wang, L.D. Zhao, Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping, Nano Energy , 35 , 387-395 (2017).
    [12] M. Backhaus-Ricoult, J. Rustad, L. Moore, C. Smith, J. Brown, Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation, Applied Physics A, 116, 433-470 (2014).
    [13] J. Liu, C.L. Wang, Y. Li, W.B. Su, Y.H. Zhu, J.C. Li, L.M. Mei, Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics, Journal of Applied Physics, 114, 223714 (2013).
    [14] A. V. Kovalevsky, A. A. Yaremchenko, S. Populoh, P. Thiel, D. P. Fagg, A. Weidenkaffbd, J. R. Frade, Towards a high thermoelectric performance in rare-earth substituted SrTiO3: effects provided by strongly-reducing sintering conditions, Phys Chem Chem Phys, 16, 26946-26954 (2014).
    [15] J. Liu, C.L. Wang, W.B. Su, H.C. Wang, J.C. Li, J.L. Zhang, L.M. Mei., Thermoelectric properties of Sr1−xNdxTiO3 ceramics, Journal of Alloys and Compounds, 492, L54-L56 (2010).
    [16] H. Muta, K. Kurosaki, S. Yamanaka, Thermoelectric properties of rare earth doped SrTiO3, Journal of Alloys and Compounds, 350, 292-295 (2003).
    [17] H.C. Wang , C.L. Wang, W.B. Su, J. Liu, Y. Zhao, H. Peng, J.L. Zhang, M.L. Zhao, J.C. Li, N. Yin, L.M. Mei, Enhancement of thermoelectric figure of merit by doping Dy in La0.1Sr0.9TiO3 ceramic, Materials Research Bulletin, 45, 809–812 (2010).
    [18] H.C. Wang, C. L. Wang, W. B. Su, J. Liu, Y. Sun, H. Peng, L. M. Mei, Doping Effect of La and Dy on the Thermoelectric Properties of SrTiO3, Journal of the American Ceramic Society, 94, 838–842 (2011).
    [19] 林家弘,釹鏑共摻雜鈦酸鍶塊材之製備及其熱電性質之研究, 成功大學材料科學及工程學系碩士學位論文,(2018).
    [20] H. Ohta, Thermoelectrics based on strontium titanate, Materials today, 10, 44-49 (2007).
    [21] N. Shafiei, M. H. Harun, K. A. M. Annuar, M. F. A. Halim, M. S. M. Aras, A. H. Azahar, Development of portable air conditioning system using peltier and seebeck effect, Journal of Telecommunication, Electronic and Computer Engineering , 8, 97-100 (2016).
    [22] H.B.Callen, The Application of Onsager's Reciprocal Relations to Thermoelectric, Theromagnetic, and galvanomagnetic Effects, Physical Review, 73, 1349-1358 (1948).
    [23] Xiao Zhang, Li-Dong Zhao, Thermoelectric materials: Energy conversion between heat and electricity, Journal of Materiomics, 1, 92-105 (2015).
    [24] D .M. Rowe, Thermoelectrics handbook: macro to nano. CRC Press, (2005).
    [25] O. Francis, C.J. Lekwuwa, I.H. John, Performance Evaluation of a Thermoelectric Refrigerator, International Journal of Engineering and Innovative Technology (IJEIT), 2, 18-24 (2013).
    [26] T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. LaForge, Quantum Dot Superlattice Thermoelectric Materials and Devices, Science, 297, 2229-2232 (2002).
    [27] K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M.G. Kanatzidis, Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit, Science, 303, 818-820 (2004).
    [28] X.F. Zheng, C.X. Liu, Y.Y. Yan, Q. Wang, A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications, Renewable and Sustainable Energy Reviews, 32, 486-503 (2014).
    [29] Brian Skinner and Liang Fu ,Large, nonsaturating thermopower in a quantizing magnetic field, Science Advances, 4, 1-6 (2018).
    [30] 張心紜, 節能、減碳又減廢─固態熱電發電技術, 經濟部能源局能源報導 (2014).
    [31] S.B. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications, Applied Thermal Engineering, 23, 913-935 (2003).
    [32] G. Engelmann , M. Laumen , J. Gottschlich, K. Oberdieck, and Rik W. De Doncker, Temperature-Controlled Power Semiconductor Characterization Using Thermoelectric Coolers, Transactions on Industry Applications, 54, 2598-2605 (2018).
    [33] G. Tan, L.D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chemical reviews, 116, 12123-12149 (2016).
    [34] P. Vaqueiro and A.V. Powell, Recent developments in nanostructured
    materials for high-performance thermoelectrics, The Royal Society of Chemistry , 20, 9577–9584 (2010).
    [35] Y. Zhang, B. Feng, H. Hayashi, C.P. Chang, Y.M. Sheu, I. Tanaka, Y. Ikuhara, H. Ohta, Double thermoelectric power factor of a 2D electron system, Nature Communication, 9, 2224 (2018).
    [36] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597–602 (2001).
    [37] T. Fang, X. Zhao and T. Zhu , Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles, Materials, 11, 847-863 (2018).
    [38] N. Shutoh, S. Sakurada, Thermoelectric properties of the Tix(Zr0.5Hf0.5)1− xNiSn half-Heusler compounds, Journal of alloys and compounds, 389, 204-208 (2005).
    [39] H. Zhang, G. Mu, F. Huang, X. Xie, Synthesis and structures of type-I clathrates: Rb6Na2Ge44.89(1), Cs6Na2Zn4Ge42 and Cs6.40(1)Na1.60(1)Ga8Ge38 , Journal of Solid State Chemistry, 242, 155-161 (2016).
    [40] N.P. Blake, S. Latturner, and J.D. Bryan, Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30, Journal of Chemical Physics, 115, 8060-8073 (2001).
    [41] M. Rull-Bravo, A. Moure, J.F. Fernandez and M. Mart´ın-Gonzalez, Skutterudites as thermoelectric materials: revisited, RSC Advances, 5, 41653-41667 (2015).
    [42] X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports, Journal of the American Chemical Society, 133, 7837-7846 (2011).
    [43] M. Ohtaki, Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source, Journal of the Ceramic Society of Japan, 119, 770-775 (2011).
    [44] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3, Nature Materials, 6, 129-134 (2007).
    [45] J.W. Fergus, Oxide materials for high temperature thermoelectric energy conversion, Journal of the European Ceramic Society, 32, 525-540 (2012).
    [46] M. Karppinen, H. Fjellvåg, T. Konno,Y. Morita, T. Motohashi, and
    H. Yamauchi, Evidence for Oxygen Vacancies in Misfit-Layered Calcium Cobalt Oxide, [CoCa2O3]qCoO2, Chemistry of Materials, 16, 2790-2793 (2004).
    [47] H. Ohta, K. Sugiura, K. Koumoto, Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3, Inorganic chemistry, 47, 8429-8436 (2008).
    [48] Y. Liu, Y. Lin, L. Jiang, C.W. Nan, Z. Shen, Thermoelectric properties of Bi3+ substituted Co-based misfit-layered oxides, Journal of Electroceramics, 21, 748-751 (2008).
    [49] N. Van Nong, N. Pryds, S. Linderoth, M. Ohtaki, Enhancement of the Thermoelectric Performance of p‐Type Layered Oxide Ca3Co4O9+δ Through Heavy Doping and Metallic Nanoinclusions, Advanced materials, 23, 2484-2490 (2011).
    [50] 張金花, 余大斌, 舒詩文, 王峰, 杜凱, 高溫氧化物熱電材料及其研究現狀, 材料導報, 38-42 (2013).
    [51] P. Liu, G. Chen, Y. Cui, H. Zhang, F. Xiao, L. Wang, H. Nakano, High temperature electrical conductivity and thermoelectric power of NaxCoO2, Solid State Ionics, 179, 2308-2312 (2008).
    [52] H. Yakabe, K. Fujita, K. Nakamura, K. Kikuchi, Thermoelectric properties of Na/sub x/CoO/sub 2-/spl delta//(x/spl ap/0.5) system; focusing on partially substituting effects, Institute of Electrical and Electronics Engineers, 551-558 (1998).
    [53] M. Ito, D. Furumoto, Microstructure and thermoelectric properties of NaxCo2O4/Ag composite synthesized by the polymerized complex method, Journal of Alloys and Compounds, 450, 517-520 (2008).
    [54] K. Fujita, T. Mochida, K. Nakamura, High-temperature thermoelectric properties of NaxCoO2-δ single crystals, Japanese Journal of Applied Physics, 40, 4644-4647 (2001).
    [55] L. Pi, S. Hébert, C. Martin, A. Maignan, B. Raveau, Comparison of CaMn1− xRuxO3 and CaMn1−yMoyO3 perovskites, Physical Review B, 67, 024430 (2003).
    [56] Y. Wang, Y. Sui, H. Fan, X. Wang, Y. Su, W. Su, X. Liu, High Temperature Thermoelectric Response of Electron-Doped CaMnO3, Chemistry of Materials, 21, 4653-4660 (2009).
    [57] L. Bocher, M. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, A. Weidenkaff, CaMn1−xNbxO3 (x ≤ 0.08) Perovskite-Type Phases As Promising New High-Temperature n-Type Thermoelectric Materials, Inorganic chemistry, 47, 8077-8085 (2008).
    [58] Z.H. Wu, H.Q. Xie, Y.B. Zhai, Enhanced thermoelectric figure of merit in nanostructured ZnO by nanojunction effect, Applied Physics Letters, 103, 243901 (2013).
    [59] G. Ren, J. Lan, C. Zeng, Y. Liu, B. Zhan, S. Butt, Y.H. Lin, C.W. Nan, High performance oxides-based thermoelectric materials, Jom, 67, 211-221 (2014).
    [60] M. Ohtaki, K. Araki, K. Yamamoto, High thermoelectric performance of dually doped ZnO ceramics, Journal of Electronic Materials, 38, 1234-1238 (2009).
    [61] T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large thermoelectric response of metallic perovskites: Sr1− xLaxTiO3 (0 ≤ x ≤ 0.1), Physical Review B, 63, 113104 (2001).
    [62] K. Zhang, J. Sunarso, Z. Shao, W. Zhou, C. Sun, S. Wang, S. Liu, Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production, RSC Advances, 1, 1661-1676 (2011).
    [63] F. Lichtenberg, The story of Sr2RuO4, Progress in solid state chemistry, 30, 103-131 (2002).
    [64] W. Zhu, C. Wang, S. Akbar, R. Asiaie, Fast-sintering of hydrothermally synthesized BaTiO3 powders and their dielectric properties, Journal of materials science, 32, 4303-4307 (1997).
    [65] S.Y. Cheng, S.L. Fu, C.C. Wei, Sintering of SrTiO3 with Li2CO3 addition, Ceramics International, 15, 231-236 (1989).
    [66] K.S. Liu, I.N. Lin, Enhanced densification of SrTiO3 perovskite ceramics, Applications of Ferroelectrics, 261-264 (1991).
    [67] S. Cho, P. Johnson, Evolution of the microstructure of undoped and Nb-doped SrTiO3, Journal of materials science, 29, 4866-4874 (1994).
    [68] Q. Fu, S. Mi, E. Wessel, F. Tietz, Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3, Journal of the European Ceramic Society, 28, 811-820 (2008).
    [69] F. Gao, H. Zhao, X. Li, Y. Cheng, X. Zhou, F. Cui, Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency, Journal of Power Sources, 185, 26-31 (2008).
    [70] C.N. George, J. Thomas, R. Jose, H.P. Kumar, M. Suresh, V.R. Kumar, P.S. Wariar, J. Koshy, Synthesis and characterization of nanocrystalline strontium titanate through a modified combustion method and its sintering and dielectric properties, Journal of Alloys and Compounds, 486, 711-715 (2009).
    [71] K. Maca, V. Pouchly, Z. Shen, Two-step sintering and spark plasma sintering of Al2O3, ZrO2 and SrTiO3 ceramics, Integrated Ferroelectrics, 99, 114-124 (2008).
    [72] X. Li, H. Zhao, D. Luo, K. Huang, Electrical conductivity and stability of A-site deficient (La, Sc) co-doped SrTiO3 mixed ionicelectronic conductor, Materials Letters, 65, 2624-2627 (2011).
    [73] Y. Li, W. Wei, L. Yang, M. Su, Y. Sun, G. Min, La and Nd co-doped effect on thermoelectric properties of SrTiO3 ceramics, Chiang Mai Journal of Science, 43, 306-310 (2016).
    [74] J. Han, Q. Sun, Y. Song, Enhanced thermoelectric properties of La and Dy co-doped, Sr-deficient SrTiO3 ceramics, Journal of Alloys and Compounds, 705, 22-27 (2017).
    [75] Y. Li,Q.Y. Hou, X.H. Wang, First-principles calculations and high thermoelectric performance of La–Nb doped SrTiO3 ceramics , Journal of Materials Chemistry A , 7, 236–247 (2019).
    [76] T. Teranishi, Y. Ishikawa, H. Hayashi, A. Kishimoto, M. Katayama, Y. Inada, Thermoelectric Efficiency of Reduced SrTiO3 Ceramics Modified with La and Nb, Journal of the American Ceramic Society, 96, 2852-2856 (2013).
    [77] M. Akhlaghi, T. Steiner, S.R. Mekaa and E.J. Mittemeijera, Misfit-induced changes of lattice parameters in twophase systems: coherent/incoherent precipitates in a matrix, Journal of Applied Crystallography, 49, 69–77 (2016).
    [78] Y. Cui, J.R. Salvador, J. Yang, H. Wang, G. Amow, H. Kleinke, Thermoelectric Properties of Heavily Doped n-Type SrTiO3 Bulk Materials, Journal of Electronic Materials, 38, 1002-1007 (2009).
    [79] C. Gong, G. Dong, J. Hu, Y. Chen, M. Qin, S. Yang, F. Gao, Effect of reducing annealing on the microstructure and thermoelectric properties of La–Bi co-doped SrTiO3 ceramics, Journal of Materials Science: Materials in Electronics, 28, 14893-14900 (2017).
    [80] L.X. Dong, Y.H. Park, Structure and transport properties of (Bi1-xSbx)2Te3 thermoelectric materials prepared by mechanical alloying and pulse discharge sintering, Materials Transactions, 43, 681-687 (2002).
    [81] P.P. Shang, B.P. Zhang, Y. Liu, J.F. Li, H.M. Zhu, Preparation and Thermoelectric Properties of La-Doped SrTiO3 Ceramics, Journal of Electronic Materials, 40, 926-931 (2010).
    [82] J. Liu, C.L. Wang, H. Peng, W.B. Su, H.C. Wang, J.C. Li, J.L. Zhang, L.M. Mei, Thermoelectric Properties of Dy-Doped SrTiO3 Ceramics, Journal of Electronic Materials, 41, 3073-3076 (2012).
    [83] B. Abeles, Lattice thermal conductivity of disordered semiconductor alloys at high temperatures, Physical Review, 131, 1906-1911 (1963).

    下載圖示 校內:2022-07-09公開
    校外:2022-07-09公開
    QR CODE