| 研究生: |
李怡萱 Li, Yi-Hsuan |
|---|---|
| 論文名稱: |
應用積體色散斜率補償器於多波長分碼多工網路架構 Integrated Dispersion Slope Equalizer for Optical Code-Division Multiple-Access Network |
| 指導教授: |
黃振發
Huang, Jen-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 頻域振幅編碼多工處理 、色度色散 、平衡檢測器 、訊號載波干擾比 、色散斜率補償器 、馬赫-曾德爾干涉儀 |
| 外文關鍵詞: | chromatic dispersion, Spectra-amplitude-coding OCDMA (SAC-OCDMA), Optical code-division multiple-access (OCDMA), signal-to-interference ratio (SIR), balance photodetector (BPD), Mach-Zehnder interferometers (MZIs), dispersion slope equalizer |
| 相關次數: | 點閱:130 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「光分碼多工處理(OCDMA)技術」是運用於光纖通訊系統架構的一項重要技術,根據不同編碼方法可以多種不同架構達成多工傳輸的效能,其中頻域振幅編碼多工(SAC-OCDMA)是最適於傳輸訊息的技術,其具有架構簡單、保密性、不需考慮同步問題等優點,且解碼端使用的平衡檢測器(BPD),在理想狀態下,可以有效抑制多重擷取干擾(MAI)。 然而,光纖的色度色散(Chromatic Dispersion)使得各波長於光纖中行徑速度不同,因此造成各波長無法同時到達接收端之平衡檢測器,導致多重擷取干擾無法抑制,而嚴重影響系統效能。為了解決此問題,在這篇論文中,我們將提出一種由馬赫-曾德爾干涉儀(Mach–Zehnder interferometer, MZI)串聯而成的色散斜率補償器,以補償色散造成的損失。此種馬赫-曾德爾干涉儀架構於矽質平面光波導(PLC),故其具體積小且色散值較具彈性等優點,當使用之傳輸光纖種類及距離不同時,造成的色散曲線斜率亦將不同,僅需針對各使用中心波長設計不同之干涉儀臂長(光程差),使補償器與光纖產生之色散曲線斜率互補,即可做較高正確性之補償。此外,此種干涉儀架構之色散斜率補償器相位易控制且其傳輸注入損失小。本論文中,即針對先前提出之頻域振幅編碼多工系統,依照所使用之各中心波長,分別設計兩組參數以補償傳輸距離為十公里、二十公里單模光纖系統,並藉由訊號載波干擾比(SIR)觀察系統效能。由色散斜率補償器各串產生之相對延遲時間曲線可驗證其與光纖色散正好為互補之斜率,因此,色散對光訊號的干擾可由適當設計之補償器補償。於論文最末並分析補償前後之系統效能,由訊號載波干擾比及使用者人數曲線可觀察出,經補償後之系統,其多重擷取干擾可順利由平衡檢測技術抑制,其系統效能亦將大幅提升。
Spectra-amplitude-coding Optical Code-Division Multiple-Access (SAC-OCDMA) is the most appropriate way for signal transmitting because it is uncomplicated and the information data can be regenerated without any synchronization. Besides, the decoder applies balance detection to suppress the multiple-access interference (MAI). However, chromatic dispersion from optical fiber produces temporal skews and destroys the rectangular structure of code patterns in the SAC-OCDMA system. Thus, the balance detection doesn’t work and the system performance will be degraded.
To improve the system performance, dispersion optical equalizers are needed. In this study, we apply cascaded Mach–Zehnder interferometers (MZIs) to design a dispersion slope equalizer for the SAC-OCDMA system. The dispersion slope of cascaded MZIs compensator based on silica-based planar lightwave circuit (PLC) could be adjusted by the arm length differences of MZIs and be complementary with the fiber links.
We present two sets of MZI length differences for 10 km-long and 20 km-long single-mode fibers and verify the compensation skill by relative delay time slope and signal-to-interference ratio (SIR). The dispersion slope equalizer with perfect complementary slope successfully compensates the dispersion from single-mode fibers and the system performance with dispersion slope equalizer is highly improved.
[1] A. Stok and E. H. Sargent, ”Lighting the local area: optical code-division multiple access and quality of service provisioning,” IEEE Network, vol. 14, no. 6, pp.42-46, Nov.-Dec. 2000.
[2] Y. G. Wen, Y. Zhang, and L. K. Chen, “On architecture and limitation of optical multiprotocol label switching (MPLS) networks using optical-orthogonal-code (OOC)/wavelength label,” Optical Fiber Technology, vol. 8, no. 1, pp. 43-70, Jan. 2002.
[3] J. A. Salehi, “Code division multiple-access techniques in optical fiber network-Part I: Fundamental principles,” IEEE Transactions on Communications, vol. 37, no. 8, pp. 824-833, Aug. 1989.
[4] J. A. Salehi and C. A. Brackett, “Code division multiple-access Techniques in optical fiber networks-Part II: Systems performance analysis,” IEEE Transactions on Communications, vol. 37, no. 8, pp. 834-842, Aug. 1989.
[5] Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” Journal of Lightwave Technology, vol. 19, no. 9, pp. 1274-1281, Sept. 2001
[6] C. C. Yang, J. F. Huang, and Shin-Pin Tseng, “Optical CDMA Network Codecs Structured With M-Sequence Codes Over Waveguide-Grating Routers,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 641-643, Feb. 2004
[7] E. K. H. Ng, G. E. Weichenberg, E. H. Sargent, “Dispersion in Multiwavelength Optical CDMA Systems: Impact and Remedies.” IEEE Transactions on communications, vol. 50, no. 11, pp. 1811, Nov. 2002.
[8] J. X. Cai, K. M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating,” IEEE Photonics Technology Letters, vol. 11, no. 11, pp. 1455–1457, Nov. 1999.
[9] M. Shirasaki, “Chromatic dispersion compensator using virtually imaged phased array,” IEEE Photonics Technology Letters, vol. 9, no. 12, pp. 1598–1600, Dec. 1997.
[10] C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photonics Technology Letters, vol. 11, pp. 1623–1625, Dec. 1999.
[11] C. R. Doerr, L. W. Stulz, S. Chandrasekhar, and R. Pafchek, “Colorless tunable dispersion compensator with 400-ps/nm range integrated with a tunable noise filter,” IEEE Photonics Technology Letters, vol. 15, no. 9, pp. 1258–1260, Sept. 2003.
[12] A. M. Vengsarkar and W. A. Reed, “Dispersion-compensating single-mode fibers: Efficient design for first- and second- order compensation,” Optics Letters, vol. 18, pp. 924-926, 1993.
[13] K. Takiguchi, K. Okamoto, and K. Moriwaki, “Dispersion Compensation Using a Planar Lightwave Circuit Optical Equalizer,” IEEE Photonics Technology Letters, vol. 6, no. 4, pp. 561-564, Apr. 1994
[14] K. Takiguchi, K. Okamoto, S. Suzuki, and Y. Ohmori, “Planar Lightwave Circuit Optical Dispersion Equalizer,” IEEE Photonics Technology Letters, vol. 6, no. 1, pp. 86-88, Jan. 1994.
[15] K. Takiguchi, K. Jinguji, K. Okamoto, and Y, Ohmori, “Variable group-delay dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” IEEE Jornal of Selected Topics in Quantum Electronics, vol. 2, pp. 270-276, 1996.
[16] K. Takiguchi, S. Kawanishi, H.Takara, A. Himeno, and K. Hattori, “Dispersion slope equalizer for dispersion shifted fiber using a lattice-form programmable optical filter on a planar lightwave circuit,” Journal of Lightwave Technology, vol. 16, pp. 1647-1656, 1998.
[17] Koichi Takiguchi, Member, IEEE, Katsunari Okamoto, Fellow, IEEE, Takashi Goh, and Mikitaka Itoh, “Integrated-Optic Dispersion Slope Equalizer for N × Several Tens of Gb/s WDM Transmission,” Journal of Lightwave Technology, vol. 21, no. 11, pp. 2463-2469, Nov. 2003.
[18] J. F. Huang, and D. Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes,” IEEE Photonics Technology Letters, vol. 12, pp. 1252-1254, Sept. 2000.
[19] M. Kavehrad and D. Zaccarin, “Optical code- division-multiplexed systems based on spectral encoding of non-coherent sources,” Journal of Lightwave Technology, vol. 13, no. 3, pp. 534 -545, Mar. 1995.
[20] D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photonics Technology Letters, vol. 4, no. 4, pp. 479-482, Apr. 1993.
[21] H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed-waveguide N×N wavelength multiplexer,” Journal of Lightwave Technology, vol. 13, no. 3, pp. 447-455, Mar. 1995.
[22] H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an Arrayed-Waveguide Multiplexer on N×N Optical Interconnection,” Journal of Lightwave Technology, vol. 14, no. 6, pp. 1097-1105, Jun. 1996.
[23] B. J. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” Journal of Lightwave Technology, vol. 6, pp. 1011-1015, Jun. 1988.
[24] N. Takato, T. Kominato, A. Sugita, K. Jinguji, Hiromutoba, and M. Kawachi, “Silica-Based Integrated Optic Mach-Zehnder Multi/Demultiplexer Family with Channel Spacing of 0.01-250 nm,” IEEE Journal on Selected Areas in Communications, Vol. X. no. 6. pp. 1120-1127, Aug. 1990
[25] M. M. K. Liu, Principles and Applications of Optical Communications, Irwin, Chicago, 1996.
[26] R. Syms and J. Cozens, Optical Guided Waves and Devices, McGraw-Hill, New York, 1992.
[27] M. Born and E. Wolf, Principles of Optics, 6th ed., Pergamon Press, Elmsford, NY, 1980.
[28] F. P. Kapron and D. B. Keck, “Pulse Transmission Through a Dielectric Optical Waveguide,” Applied Optics IP, vol. 10, Issue 7, pp. 1519-1523, Jul. 1971.
[29] I. H. Malitson, Journal of the Optical Society of America, vol. 55, no. 10, pp. 1205, Oct. 1965.
[30] G. P. Agrawal, Fiber-Optic Communication System, 2nd ed., Wiley-Interscience, NY, 1997.
[31] G. Keiser, Optical Fiber Communications, 3rd ed., McGraw-Hill, New York, 2000.
[32] A. Sahin and A.E. Willner, “System Limitations due to Chromatic Dispersion and Receiver Bandwidth for 2-D Time-Wavelength OCDMA System,” Lasers and Electro-Optics Society, 2003, the 16th Annual Meeting of the IEEE, vol. 2, pp. 551- 552, 2003.
[33] T. Ozeki, “Optical equalizers,” Optics Letters, vol. 17, no. 5, pp. 375-377, Mar. 1992.
[34] K. Takiguchi, K. Okamoto, and K. Moriwaki, “Planar Lightwave Circuit Dispersion Equalizer,” Journal of Lightwave Technology, vol. 14, no. 9, pp. 2003-2011, Sept. 1996.
[35] K. Takiguchi and K. Okamoto, “Planar lightwave circuit dispersion equalizer with a wide operational frequency range,” Electronics Letters, vol. 30, no. 17, pp. 1404-1405, Aug. 1994.
[36] I. B. Djordjevic, “PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM,” Optics Express, vol. 15, pp. 3692-3701, Apr. 2007.
[37] P. Poggiolini, A. Nespola, S. Abrate, V. Ferrero, C. Lezzi, “Long-Term PMD Characterization of a Metropolitan G.652 Fiber Plant,” Journal of Lightwave Technology, vol. 24, pp. 4022-4029, Nov. 2006.
[38] X. Liu, D. M. Gill, S. Chandrasekhar, “Optical technologies and techniques for high bit rate fiber transmission,” Bell Labs Technical Journal, vol. 11, pp. 83-104, Feb. 2006.