簡易檢索 / 詳目顯示

研究生: 李劭川
Lee, Shao-Chuan
論文名稱: 兩個二次函數在R^2和R^3上聯合值域形態的完整刻劃
Complete Characterization for the Shape of Joint Numerical Ranges of Two Quadratic Functions on R^2 and R^3
指導教授: 許瑞麟
Sheu, Ruey-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 107
中文關鍵詞: 二次函數齊次二次函數聯合值域凸性二次等高集的分割二次優化
外文關鍵詞: Quadratic functions, Homogeneous quadratic functions, Joint numerical range, Convexity, Separation of quadratic level set, Quadratic optimization
相關次數: 點閱:152下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 給定兩個定義在 R^n 上的二次函數 f(x) = x^⊤Ax + 2a^⊤x + a_0 和 g(x) = x^⊤Bx + 2b^⊤x + b_0,本論文主要考慮它們的聯合值域 R(f, g) = {(f(x), g(x)) | x ∈ R^n}。雖然這是一個重要的問題,但由文獻中可知,我們對聯合值域 R(f, g) 的幾何形狀仍所知甚少。目前僅對於聯合值域 R(f, g) 的凸性,從 1941 年 Dines 的工作 [5] 到 2016 年 Bazán 和 Opazo [6] 和 2022 年 Nguyen 等人的工作 [8],最終才給出了判斷 R(f, g) 凸性的充分必要條件。本論文我們除了回顧聯合值域 R(f, g) 凸性的條件之外,特別進一步聚焦在聯合值域 R(f, g) 的可能形狀。儘管這是一個很遠大的目標,但我們成功地踏出第一步在 R^2 和 R^3 上對一組仿射函數 f 和二次函數 g 的所有可能之聯合值域 R(f, g) 形狀進行了分類;同時也在 R^2 和 R^3 上兩個齊次二次函數的一部分特殊情況有了部分進展。論文中我們特別設計了許多表格,以總結聯合值域 R(f, g) 的各種類型以及與之相關的函數 f 和 g 所需要滿足的形式,作為方便之後研究查閱和參考之用。此外,我們提供了許多具體的數值例證,並通過這些例證和圖表來加深對理論結果的理解,為研究二次聯合值域圖形分類的複雜性做出初步的貢獻。

    Given two quadratic functions f(x) = x^⊤Ax + 2a^⊤x + a_0 and g(x) = x^⊤Bx + 2b^⊤x + b_0, this paper mainly considers their joint numerical range R(f, g) = {(f(x), g(x)) | x ∈ R^n}. Although this is an important question, we know very little about the geometry of the joint numerical range R(f, g) from the literature. At present, only for the convexity of the joint numerical range R(f, g), from the work of Dines [5] in 1941 to the work of Bazán and Opazo [6] in 2016 and the work of Nguyen et al. [8] in 2022, necessary and sufficient conditions for checking the convexity of R(f, g) are finally given. In this paper, in addition to reviewing the conditions for the convexity of the joint numerical range R(f, g), we further explore the possible shapes of the joint numerical range R(f, g). Although this is an ambitious goal, we succeeded in taking the first step to classify all possible joint domain R(f, g) shapes for a set of affine functions f and quadratic functions g on R^2 and R^3; at the same time, progresses in some special cases of two homogeneous quadratic functions on R^2 and R^3 are also obtained. We also designed many tables to summarize the various types of the joint numerical range R(f, g) and the related conditions for functions f and g to be satisfied. This serves as a convenient reference and tool for later research. In addition, we provide many specific numerical examples and use these examples and graphs to deepen the understanding of theoretical results, making initial contributions to classify the possible graphs of the quadratic joint numerical range.

    摘要 I Abstract II 誌謝 III Table of Contents IV List of Tables VI List of Figures VII 1 Introduction 1 2 Preliminaries 9 2.1 Convexity of the joint numerical range 9 2.2 Non-convex joint numerical ranges 16 2.3 The difficulty of convex joint numerical range 29 3 The joint numerical range of an affine function and a quadratic function on R^2 and R^3 34 3.1 The canonical form of quadratic function 34 3.2 The joint numerical range R(f, g) of two affine functions f and g 37 3.3 The joint numerical range R(f, g) of an affine function f and a quadratic function g on R^2 and R^3 40 3.3.1 The joint numerical range R(f, g) of the functions f and g defined on R^2 40 3.3.2 The joint numerical range R(f, g) of the functions f and g defined on R^3 53 3.4 Relation between the joint numerical ranges of affine and quadratic functions on R^2 and R^3 67 4 The joint numerical range of two quadratic function on R^2 and R^3 71 4.1 The joint numerical range R(f, g) of two homogeneous quadratic functions f and g on R^2 and R^3 72 4.1.1 For the homogeneous quadratic functions f and g defined on R^2 72 4.1.2 For the homogeneous quadratic functions f and g defined on R^3 93 4.2 The joint numerical range R(f, g) of two quadratic functions f and g on R^2 and R^3 98 5 Conclusion and Future Research 103 References 106

    [1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
    [2] L. Brickman. On the field of values of a matrix. Proceedings of the American Mathematical Society, 12(1):61–66, 1961.
    [3] W. S. Burnside and A. W. Panton. The theory of equations: with an introduction to the theory of binary algebraic forms. Fourth edition. Longmans Green and Co., 1899.
    [4] Y.-C. Chu. On separation properties of quadratic level/sublevel sets and its applications. Master's thesis, National Cheng Kung University, 2021.
    [5] L. L. Dines. On the mapping of quadratic forms. Bulletin of the American Mathematical Society, 47(6):494–498, 1941.
    [6] F. Flores-Bazán and F. Opazo. Characterizing the convexity of joint-range for a pair of inhomogeneous quadratic functions and strong duality. Minimax Theory Appl, 1(2):257–290, 2016.
    [7] H.-Q. Nguyen, Y.-C. Chu, and R.-L. Sheu. On separation of level sets for a pair of quadratic functions. Preprint, 2021.
    [8] H.-Q. Nguyen, Y.-C. Chu, and R.-L. Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial and Management Optimization, 2022.
    [9] H.-Q. Nguyen and R.-L. Sheu. Geometric properties for level sets of quadratic functions. Journal of Global Optimization, 73(2):349–369, 2019.
    [10] B.-T. Ông. A generic framework for quadratic programming with quadratic constraints involving joint numerical ranges and slater conditions. Master's thesis, National Cheng Kung University, 2022.
    [11] B. T. Polyak. Convexity of quadratic transformations and its use in control and optimization. Journal of Optimization Theory and Applications, 99(3):553–583, 1998.
    [12] M. Ramana and A. J. Goldman. Quadratic maps with convex images. Manuscript, 1995.
    [13] Y. Xia, S. Wang, and R.-L. Sheu. S-lemma with equality and its applications. Mathematical Programming, 156(1-2):513–547, 2016.
    [14] V. A. Yakubovich. S-procedure in nolinear control theory. Vestnik Leninggradskogo Universiteta, Ser. Matematika, pages 66–77, 1971.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE