| 研究生: |
李昆祐 Lee, Kun-Yu |
|---|---|
| 論文名稱: |
腦波觸發控制機器人於中風病人膝髖關節復健之研究 Development of an EEG-trigger Controlled Robot for Rehabilitation of Knee and Hip of Stroke Patients |
| 指導教授: |
林宙晴
Lin, Chou-Ching 朱銘祥 Ju, Ming-Shaung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 中風 、brain-computer-interface 、mu 波 、復健機器人 |
| 外文關鍵詞: | brain-computer-interface, mu wave, stroke, rehabilitation robot |
| 相關次數: | 點閱:99 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中風是一種急性腦血管疾病,常造成神經損傷失去運動控制的能力,使病患肢體無法自主運動。針對中風病人的復健治療,藉由機器人對於下肢肌肉神經的誘發,以及利用視覺回饋引導病患作想像的動作,誘發腦部電位產生變化,同時刺激大腦和中樞神經的連結路徑,產生神經復健的療效。
因此本研究的主要目的是整合人腦-電腦介面(Brain Computer Interface, BCI)和下肢復健機器人之新型復健系統。本研究擷取受測者C3、C4的腦波變化,以大腦皮質運動區波為基礎的人機介面系統。經過訊號前處理及辨識器產生復健機器人的控制命令,使用腦波當成機器人作動的觸發訊號。
在實驗中,第一步驟先讓受測者熟悉BCI的使用,作為訓練模式。接著才要求受測者把腳放在機器上,在想像辨識成功後,由機器帶領下肢進行復健動作,做模擬復健的實驗。本研究以單一常人為受測者,由實驗結果發現,經過5週的訓練之後,人腦電腦介面實驗的成功率有進步的趨勢(40%~67.5%);在訓練之後,常人模擬復健實驗的成功率可達80%。
Stroke is an acute cerebrovascular disease. Stroke patients suffer from movement disabilities as the result of neurological injuries. In the rehabilitation of stroke patients, the connection between brain and the central nervous system is often facilitated by stretch of muscles from robot and potential reorganization in the brain from visual biofeedback.
The aim of this study is to integrate a BCI and a lower limb rehabilitation robot to develop a new rehabilitation system. The brain-computer interface is based on the wave of motor cortex detected from the C3 and C4 area. Signal preprocessing methods including reducing of spikes generated from robot motors and filtering by an optimal bandpass filter and a classifier are developed to generate a command for robot. In other words, the EEG signal is used as a trigger for controlling movement of the robot.
In the beginning of the study, the subject is familiar with the use of BCI. After training mode, subjects are asked to put his/her lower limb on the robot. And the robot can be driven to guide the patients’ lower extremity to exercise by thoughts of the subjects. The experimental results from one normal subject showed that for the training mode the success rate could be improved after five weeks of usage (40% to 67.5%). While for the test experiments the success rate is about 80%.
[1] T. Sakaki, “TEM: therapeutic exercise machine for recovering walking functions of stroke patients,” Industrial Robot: An International Journal, vol. 26, No 6 pp. 446-450, 1999.
[2] R. Hirata, T. Sakaki, S. Okada et al., “BRMS Bio Responsive Motion System,” Proceedings of 2002 IEEE/RSJ INTI. Conference on intelligent Robots and Systems, pp. 1344-1348, October 2002.
[3] P. S. Lum, C. G. Burgar, P. C. Shor et al., “Robot-Assisted Movement Training Compared With Conventional Therapy Techniques for the Rehabilitation of Upper-Limb Motor Function After Stroke,” Arch Phys Med Rehabil, vol. 83, pp. 952-959, 2002.
[4] H. I. Krebs, B. T. Volpe, M.L.Aisen et al., “Robotic applications in neuromotor rehabilitation,” Robotica, vol. 21, pp. 3-11, 2003.
[5] M. Bernhardt, M. Frey, G. Colombo et al., “Hybrid Force-Position Control Yields Cooperative Behaviour of the Rehabilitation Robot LOKOMAT,” Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, 2005.
[6] 陳秋旺, “肘關節復健機器人之研究,” 國立成功大學機械工程學系碩士論文, 2000.
[7] 林棟煌, “肘關節神經復健用機器人之改良和臨床測試,” 國立成功大學機械工程學系碩士論文, 2001.
[8] 董憲奇, “肘關節神經復健用機器人之改進和臨床研究,” 國立成功大學機械工程學系碩士論文, 2002.
[9] 吳思穎, “上肢復健機器臨床試驗與改良,” 國立成功大學機械工程學系碩士論文, 2003.
[10] 龔品誠, “具量測腕部控制之上肢復健機器人,” 國立成功大學機械工程學系碩士論文, 2004.
[11] 潘柏瑋, “中風病患踝關節復健用機器人之研究,” 國立成功大學機械工程學系碩士論文, 2006.
[12] 馬仕安, “膝和髖關節神經復健用機器人之研究,” 國立成功大學機械工程學系碩士論文, 2007.
[13] 高聖涵, “肌電圖回授復健機器人於中風病患踝關節主動扭矩控制之研究,” 國立成功大學機械工程學系碩士論文, 2009.
[14] L. A. Farwell, E. Donchin, and A. F. Kramer, “Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials,” Electroencephalography and clinical Neurophysiology, vol. 70, pp. 510-523, 1988.
[15] N. Birbaumer, N. Ghanayim, T. Hinterberger et al., “A spelling device for the paralysed,” NATURE, vol. 398, pp. 398, 1999.
[16] J Kalcher, D Flotzinger, and G. Phrtscheller, “GRAZ BRAIN-COMPUTER INTERFACE: AN EEG-BASED CURSOR CONTROL SYSTEM,” Engineering in Medicine and Biology Society, 1993. Proceedings of the 15th Annual International Conference of the IEEE, pp. 1264-1265, 1993.
[17] J. R. Wolpaw, and D. J. McFarland, “Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans,” PNAS, vol. 101, pp. 17849–17854, 1994.
[18] J. d. R. Millán, F. Renkens, and J. Mouriño, “Noninvasive Brain-Actuated Control of a Mobile Robot by Human EEG,” IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 51, pp. 1026-1033, 2004.
[19] J. B. Christian, P. Shenoy, R. Chalodhorn et al., “Control of a humanoid robot by a noninvasive brain–computer interface in humans,” JOURNAL OF NEURAL ENGINEERING, vol. 5, pp. 214-220, 2008.
[20] K. Tanaka, K. Matsunaga, and H. O. Wang, “Electroencephalogram-Based Control of an Electric Wheelchair,” IEEE TRANSACTIONS ON ROBOTICS, vol. 21, pp. 762-766, 2005.
[21] G. Pfurtscheller, C. Guger, G. M. ller et al., “Brain oscillations control hand orthosis in a tetraplegic,” Neuroscience Letters, vol. 292, pp. 211-214, 2000.
[22] G. R. Müller-Putz, and G. Pfurtscheller, “Control of an Electrical Prosthesis With an SSVEP-Based BCI,” IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 55, pp. 361-364, 2008.
[23] 劉勇均, “應用於指動偵測之腦波訊號分析系統,” 國立成功大學機械工程學系碩士論文, 2004.
[24] 王政道, “m波為控制源之研究,” 國立成功大學機械工程學系碩士論文, 1999.
[25] 陳志瑋, “研究以小波神經網路做m波即時鑑別,” 國立成功大學機械工程學系碩士論文, 2002.
[26] 莊舜龍, “適應濾波器與事件相關電位於腦波前處理之應用,” 國立成功大學機械工程學系碩士論文, 2003.
[27] 徐政煒, “應用隨機共振法強化事件相關去同步現象,” 國立成功大學機械工程學系碩士論文, 2005.
[28] 方振隆, “以腦波控制之主動式義手,” 國立成功大學機械工程學系碩士論文, 2004.
[29] 施明志, “應用於人腦電腦介面之主動式手部輔具,” 國立成功大學機械工程學系碩士論文, 2006.
[30] 陳志瑋, “以mu波為基礎之大腦電腦介面之實現與強化,” 國立成功大學機械工程學系博士論文, 2009.
[31] C.-W. Chen, M.-S. Ju, Y.-N. Sun et al., “Model Analyses of Chronic Visual Biofeedback Training for EEG-based Brain-Computer Interface,” J Comput Neurosci (on-line April 2009, DOI 10.1007/s10827-009-0148-4), 2009.
[32] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, “Discrete-Time Signal Processing, Second edition,” Prentice Hall, 1998.