簡易檢索 / 詳目顯示

研究生: 葉惠雯
Yeh, Hui-Wen
論文名稱: 合成中孔洞材料應用於光降解反應及超級電容
Synthesis of Mesoporous Materials for Applications in Photodegradation and Supercapacitors
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 154
中文關鍵詞: 中孔洞材料光降解反應超級電容
外文關鍵詞: Mesoporous Material, Photodegradation, Supercapacitor
相關次數: 點閱:103下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成兩大研究主題,第一部分為以氧化鈦奈米管當作製備光觸媒材料的擔載主體,藉由金屬氧化物(例如:Fe2O3或SiO2)或非金屬元素(例如:N) 摻雜或包覆在奈米管上進行觸媒活性改質,並評估各觸媒材料的光催化效能。第二部分是結合絲綢狀中孔洞碳材和金屬氧化物(二氧化釕及氧化錳)製備複合電極材料,並且對其進行電化學測試與分析。

    第一部分:氧化鈦奈米管@中孔洞氧化矽光觸媒合成、鑑定及對Rhodamine B之光降解效能評估
    氧化鈦奈米管@中孔洞氧化矽光觸媒 (TNT@MS) 合成,是先以簡單的高鹼溶液水熱法製備TNT,接著再以矽酸鈉(sodium silicate)當作MS(mesoporous silica)的前驅物,並以明膠當作有機模板,藉由在溶膠凝膠法的合成過程中,將兩材料混合製備成TNT@MS。此外,並改變不同MS與TNT的重量比、使用不同種類的界面活性劑、調控pH值的高低、改變水熱的天數,以及在不同鍛燒溫度下等實驗變因,找出最佳製作高光催化效能之TNT@MS複合材料的合成條件,其為以MS/TNT=1.5進行合成TNT@MS,而以gelatin當作界面活性劑,調控反應系統pH值至5,接著水熱一天後,並於600℃高溫鍛燒六小時。
    藉由穿透式電子顯微鏡(TEM),觀察TNT@MS複合材料在600℃高溫燒結下,其結構仍然維持管狀的型態。由X-ray粉末繞射儀(XRD),檢測包覆MS後的TNT結晶度提高且晶相轉變為anatase晶型。透過N2等溫吸附脫附實驗,可得知包覆MS的TNT具有高的表面積(383 m2/g),且遠高於市售的P25(50 m2/g)。
    在可見光下光降解Rhodamine B的實驗,評估包覆TNT@MS的光催化活性。由結果可知,此新型光觸媒比市售的P25具有更高的光催化能力。由此推斷MS除了可以增加TNT管狀結構的穩定性外,也可以提升TNT在可見光下的光催化活性。
    由於二氧化鈦的能隙較大(約在3.0~3.2 eV),在紫外光照射才能進行光催化反應,因此為了將激發光源從紫外光區位移至可見光區,提高二氧化鈦光觸媒的應用層面,利用非金屬元素N及金屬氧化物Fe2O3摻雜在TNT上,促使二氧化鈦的能隙間產生新的能階,縮小二氧化鈦的價帶與傳導帶之間的距離,使其在可見光照射下能夠具有良好的光催化效能。
    透過改變不同尿素對TNT的莫耳比(urea/TNT),找出最佳製作具有高光催化效能之N/TNT複合材料的合成條件,其中以urea/TNT莫耳比為7時所製備的N/TNT複合材料有最佳的光催化效果;此外,藉由改變不同Fe2O3對TNT的重量比(Fe2O3/TNT),找出最佳製備具有高光催化效能之Fe2O3/TNT複合材料的合成條件,其中在Fe2O3/TNT比例為5時,材料的光催化活性為最好,雖然其光催化能力比TNT好但卻無法高過P25,因此為了提高5-Fe2O3/TNT複合材料的光催化活性,利用 MS進行改質,增加TNT管狀結構的穩定性外,也可以提升5-Fe2O3/TNT材料在可見光下的光催化活性。

    第二部分:製備二氧化釕(或氧化錳)/絲綢狀中孔洞碳材複合電極材料及其電容行為分析與測試
    本部分研究結合具電雙層電容特性的絲綢狀中孔洞碳材和具擬電容特性的金屬氧化物(二氧化釕及氧化錳),以簡易的水熱法將金屬前驅物鑲嵌於碳材上,再經過適當溫度的熱處理,製作出兼具高功率及高能量密度的電極儲能材料:二氧化釕或氧化錳/絲綢狀中孔洞碳材複合材料(RuO2/SL-MC or MnxOy/SL-MC)。RuO2/SL-MC複合碳材在擔載了12.0 wt%的二氧化釕後,於掃描速率25 mV/s的條件下,整體比電容值提升至原來的兩倍,二氧化釕的使用率更高達837.4 Fg-1,於功率密度上亦有良好的表現,在25 mV/s~1000 mV/s的掃描速率範圍,其電容保留率高達72 %。由上述結果顯示,以水熱法合成的氧化釕/中孔洞碳材複合電極材料兼具了能量密度與功率密度,其優異的儲能特性極具商業化的潛能。
    由於釕為貴重金屬元素且易造成環境汙染,因此改以氧化錳為替代材料,製備MnxOy/SL-MC複合碳材。在循環伏安的測試結果中,複合碳材在擔載了9.0 wt%的氧化錳後,於掃描速率25 mV/s的條件下氧化錳的使用率為368.6 Fg-1;在功率密度上亦有不錯的表現,於25 mV/s~1000 mV/s的掃描速率範圍,其電容保留率仍可維持在六成左右(60 %)。由上述結果顯示,目前所合成的MnxOy/SL-MC複合電極材料雖具有不錯的電容特性但仍不如RuO2/SL-MC複合碳材,其原因為氧化錳顆粒易於團聚,無法像二氧化釕具有高度分散性,使得其結構較為緻密影響其電容行為,因此在往後需針對氧化錳的外觀結構進行改質。

    There are two major topics discussed in this thesis. In the first part, titania nanotubes were used as substrate to prepare photocatalytic materials. In order to improve photocatalytic activity of catalysis, we used metal oxides (ex: Fe2O3 or SiO2) and non-metal element (ex: N) to doped or cover on titania nanotubes, and then we evaluated the catalytic efficiency of individual catalysis. In the second part, we combined silk-liked mesoporous carbons and metal oxides (ruthenium oxide and manganese oxide) to synthesis nanocomposite electrodes and characterized its electrochemical behavior.

    PartⅠ:Synthesis and characterization of titania nanotube@mesoporous silica for degradation of Rhodamine B
    Titania nanotube@mesoporous silicas (TNT@MS) were prepared by the simple hydrothermal method and sol-gel process. We changed the ratio of MS to TNT , the kind of surfactants, the pH values, the hydrothermal days and the calcinations temperature to obtain the optimum condition. Through the different experimental parameters, the best ratio of MS to TNT was 1.5. Gelatin was used as surfactant and pH value was controlled to 5. The hydrothermal day was one and the calcinations temperature was 600℃.
    The structural morphology of TNT@MS was characterized by transmission electron microscopy (TEM). Through the TEM images, we could observes that all samples maintain the tube-like structure at 600℃. The crystal phase of TNT@MS was measured by powder X-ray diffractometer (XRD). The result of all samples was shown that TNT was changed to anatase phase. The N2 adsorption-desorption isotherm experiment indicated that TNT@MS exhibited high surface area (383 m2/g), which was much higher than that of the commercial P25 (50 m2/g). The photocatalytic activity of TNT@MS was measured by degradation of Rhodamine B under visible-light. The activity of the novel photocatalyst was higher than that of pure TNT and commercial P25. The result revealed that mesoporous silica could maintain the tube-like structure of TNT but also could increase the photocatalytic activity of TNT.
    The energy gap of TiO2 was so large that it needed to excite electron under UV light. In order to shift the excited light source from UV to visible range, we used non-mental element N and metal oxide Fe2O3 to produce new energy levels between the valence band and conduction band of TiO2. That could reduce the energy gap of TiO2. We changed the molar ratio of urea to TNT to obtain the optimum condition. According to experimental results, the best ratio of urea to TNT was 7 that had better catalytic activity than TNT, even than P25. Besides, we also changed the weight percent of Fe2O3 to TNT and the best ratio was 5. 5-Fe2O3/TNT composite had better activity than TNT, but that was worse than P25. The composite’s activity was improved by mesoporous silica, that can increase the catalytic efficient of the composite under visible-light.

    PartⅡ:Synthesize metal oxides (RuO2 or MnxOy)/silk-like carbon composite in supercapacitor application
    In order to promote the SC value (or energy density) in real application, we combined silk-like mesoporous carbon and metal oxides (include RuO2 and MnxOy) to synthesize carbon composite materials easily via hydrothermal treatment. According to CV analysis, the weight percentage of RuO2/silk-like carbon composite materials (RuO2/SL-MC) was about 12.0 wt% that had the best capacitive performance. The specific capacitive value of the 12-RuO2/SL-MC composite was much high by two times than of the pristine carbon. The utilation of ruthenium oxide of the composite was up to 837 Fg-1 at the scan rate of 25 mVs-1. Besides, the capacitive retention of the 12-RuO2/SL-MC composite were 72 % (ranged from the scan rate of 25 to 1000 mVs-1), demonstrating excellent propriety of high power density. These results proved the RuO2/SL-MC composite to be an excellent candidate for practical application.
    RuO2 showed the best pseudo-capacitive properties, nevertheless the high cost and the polluting effect on environment made this not attractive for large scale use. Thus, actually manganese oxide was investigated as possible substitute. Through CV analysis, the weight percentage of MnxOy/silk-like carbon composite materials (MnxOy/SL-MC) was about 9.0 wt% that had the best capacitive performance. The specific capacitive value of the 9-MnxOy/SL-MC composite was much high by one and half times than of the pristine carbon. The utilation of manganese oxide of the composite was to 369 Fg-1 at the scan rate of 25 mVs-1. Besides, the capacitive retention of the 9-MnxOy/SL-MC composite was 60 % (ranged from the scan rate of 25 to 1000 mVs-1). According to these results, the capacitive performance of MnxOy/SL-MC composite was bad than RuO2/SL-MC composite. Because manganese oxide particles were easy to aggregate, caused structure was too densely packed. That affected the capacitive behavior of MnxOy/SL-MC composite, and therefore we will probably improve the morphology of the manganese oxide in the future.

    第一章 緒論 1.1 二氧化鈦簡介 1 1.1.1 二氧化鈦的晶體結構及特性 2 1.1.2 二氧化鈦的光催化機制 4 1.2 氧化鈦奈米管相關文獻回顧 6 1.3 中孔洞材料介紹 8 1.3.1 中孔洞矽材之合成 9 1.3.1-1 界面活性劑簡介 10 1.3.1-2 溶膠凝膠法之介紹 12 1.3.1-3 矽酸鹽的基本概念 15 1.3.2 中孔洞碳材之合成 17 1.3.2-1 高分子混摻 17 1.4 電化學原理之基本介紹 19 1.4.1 電化學反應槽 20 1.4.2 影響電化學系統之因素 21 1.5 電容器簡介 22 1.6 超級電容器簡介 24 1.6.1 超級電容器的電極材料 25 1.6.2 超級電容器的電解質種類 26 1.6.3 超級電容器的種類 27 1.6.3-1 電雙層電容器 27 1.6.3-2 擬電容器 30 1.6.4 影響超級電容器特性的因素 31 1.6.5 釕氧化物於擬電容器的應用 33 1.6.6 錳氧化物於擬電容器的應用 33 1.6.7 循環伏安法 34 第二章 實驗部分 2.1 實驗藥品 37 2.1.1 氧化鈦奈米管@中孔洞氧化矽光觸媒合成、鑑定及對Rhodamine B之光降解效能評估37 2.1.2 製備二氧化釕(或氧化錳)/絲綢狀中孔洞碳材複合電極材料及其電容行為分析與測試 37 2.2 實驗合成步驟 38 2.2.1 製備氧化鈦奈米管@中孔洞氧化矽光觸媒 38 2.2.1-1 氧化鈦奈米管(TNT)之合成 38 2.2.1-2 氧化鈦奈米管@中孔洞氧化矽(TNT@MS)之合成 38 2.2.2 氮摻雜氧化鈦奈米管複合材料(N/TNT)之合成 40 2.2.3 氧化鐵/氧化鈦奈米管複合材料(Fe2O3/TNT)之合成 41 2.2.4 製備二氧化釕(或氧化錳)/絲綢狀中孔洞碳材複合電極材料 42 2.2.4-1 絲綢狀中孔洞碳材之合成 42 2.2.4-2 二氧化釕/絲綢狀中孔洞碳材複合材料之合成 43 2.2.4-3 氧化錳/絲綢狀中孔洞碳材複合材料之合成 44 2.3 實驗儀器鑑定與分析 45 2.3.1 穿透式電子顯微鏡 45 2.3.2 X-射線粉末繞射光譜 46 2.3.3 氮氣等溫吸附-脫附測量 47 2.3.4 紫外光-可見光光譜儀 47 2.3.5 全反射式-紅外線光譜儀 47 2.3.6 X光電子能譜儀 48 2.3.7 熱重分析儀 48 2.4 Rhodamine B之光催化反應實驗 48 2.5 電容材料之電化學分析與測試實驗 51 2.5.1 石墨基材的製備與處理 51 2.5.2 碳材/石墨工作電極的製作 51 2.5.3 電化學測試 52 第三章 氧化鈦奈米管@中孔洞氧化矽光觸媒合成、鑑定及光降解效能評估 3.1 研究動機與目的 54 3.2 氧化鈦奈米管(TNT)的特性分析 56 3.2.1 在不同pH值下進行常壓水熱對TNT結構的影響 58 3.2.2 在不同溫度下進行鍛燒對TNT結構的影響 60 3.2.3 結論 62 3.3 氧化鈦奈米管@中孔洞氧化矽光觸媒的鑑定分析及其光催化活性評估 62 3.3.1 改變矽酸鈉的含量對TNT@MS結構及光催化活性影響 63 3.3.1-1 TNT@MS之結構鑑定與分析 63 3.3.1-2 TNT@MS之光催化活性評估 67 3.3.1-3 TNT@MS之吸附汞離子活性測試 71 3.3.1-4 結論 71 3.3.2 改變有機模板對TNT@MS-1.5結構及光催化活性影響 72 3.3.3 改變pH值對TNT@MS-1.5結構及光催化活性影響 76 3.3.4 改變水熱天數對TNT@MS-1.5結構及光催化活性影響 80 3.3.5 改變鍛燒溫度對TNT@MS-1.5結構及光催化活性影響 83 3.3.6 結論 87 3.4 氮摻雜氧化鈦奈米管複合材料(N/TNT)的鑑定分析及光催化活性評估 87 3.4.1 改變溶劑對N/TNT之結構影響 89 3.4.2 N/TNT之結構鑑定與分析 89 3.4.3 N/TNT之光催化活性評估 94 3.4.4 結論 97 3.5氧化鐵/氧化鈦奈米管複合材料的鑑定分析及光催化活性評估 98 3.5.1 Fe2O3/TNT之結構鑑定與分析 99 3.5.2 Fe2O3/TNT之光催化活性評估 104 3.5.3 結論 105 3.6 氧化鐵/氧化鈦奈米管@中孔洞氧化矽的鑑定分析及光催化活性評估 106 3.6.1 Fe2O3/TNT@MS之結構鑑定與分析 107 3.6.2 Fe2O3/TNT@MS之光催化活性評估 110 3.6.3 Fe2O3/TNT之吸附汞離子活性測試 111 3.6.4 結論 112 第四章 製備二氧化釕(或氧化錳)/絲綢狀中孔洞碳材及其電容行為分析與測試 4.1 研究動機與目的 113 4.2 絲綢狀中孔洞碳材之特性分析 115 4.2.1 絲綢狀中孔洞碳材之合成路徑 115 4.2.2 酚醛樹酯含量對絲綢狀中孔洞碳材孔徑尺度與比表面積之影響 116 4.2.3 不同鍛燒方式對絲綢狀中孔洞碳材孔徑尺度與比表面積之影響 118 4.2.4 絲綢狀中孔洞碳材於循環伏安法之測試分析與探討 119 4.3 二氧化釕/絲綢狀中孔洞複合碳材的鑑定分析及其電容行為測試與探討 125 4.3.1 二氧化釕/絲綢狀中孔洞碳材複合材料之合成機制 125 4.3.2 二氧化釕/絲綢狀中孔洞碳材複合材料之結構鑑定與分析 126 4.3.3 二氧化釕/絲綢狀中孔洞複合碳材於循環伏安法之測試分析與探討 129 4.3.4 結論 135 4.4 氧化錳/絲綢狀中孔洞複合碳材的鑑定分析及其電容行為測試與探討 136 4.4.1 氧化錳/絲綢狀中孔洞碳材複合材料之合成機制 137 4.4.2 氧化錳/絲綢狀中孔洞碳材複合材料之結構鑑定與分析 137 4.4.3 氧化錳/絲綢狀中孔洞複合碳材於循環伏安法之測試分析與探討 139 4.4.4 結論 143 4.5 綜合結論 144 第五章 總結論 147 參考文獻 150

    1. A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chem Rev, 1995, 95, 735-758.
    2. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chem Rev, 1995, 95, 69-96.
    3. K. Hashimoto, H. Irie and A. Fujishima, Jpn J Appl Phys 1, 2005, 44, 8269-8285.
    4. S. N. Frank and A. J. Bard, J Am Chem Soc, 1977, 99, 303-304.
    5. B. Kraeutler and A. J. Bard, J Am Chem Soc, 1978, 100, 2239-2240.
    6. H. Reiche, W. W. Dunn and A. J. Bard, J Phys Chem-Us, 1979, 83, 2248-2251.
    7. C. Anderson and A. J. Bard, J Phys Chem B, 1997, 101, 2611-2616.
    8. T. Ohno, J Jpn Petrol Inst, 2006, 49, 168-176.
    9. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 2001, 293, 269-271.
    10. S. In, A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M. S. Tikhov, D. S. Wright and R. M. Lambert, J Am Chem Soc, 2007, 129, 13790-13791.
    11. Y. Cong, J. L. Zhang, F. Chen and M. Anpo, J Phys Chem C, 2007, 111, 6976-6982.
    12. C. S. Yang and C. J. Chen, Appl Catal a-Gen, 2005, 294, 40-48.
    13. C. Anderson and A. J. Bard, J Phys Chem-Us, 1995, 99, 17963-17963.
    14. C. Anderson and A. J. Bard, J Phys Chem B, 1997, 101, 2611-2616.
    15. Y. Cao, X. T. Zhang, W. S. Yang, H. Du, Y. B. Bai, T. J. Li and J. N. Yao, Chem Mater, 2000, 12, 3445-3448.
    16. S. D. Mo and W. Y. Ching, Phys Rev B, 1995, 51, 13023-13032.
    17. X. Chen and S. S. Mao, Chem Rev, 2007, 107, 2891-2959.
    18. U. Diebold, Surf Sci Rep, 2003, 48, 53-229.
    19. A. Mills and S. LeHunte, J Photoch Photobio A, 1997, 108, 1-35.
    20. 呂宗昕編著, “圖解奈米科技與光觸媒”, 商周出版, 2003.
    21. S. Iijima, Nature, 1991, 354, 56-58.
    22. R. Tenne, L. Margulis, M. Genut and G. Hodes, Nature, 1992, 360, 444-446.
    23. M. Adachi, Y. Murata, M. Harada and S. Yoshikawa, Chem Lett, 2000, 942-943.
    24. M. Adachi, Y. Murata, I. Okada and S. Yoshikawa, J Electrochem Soc, 2003, 150, G488-G493.
    25. P. Hoyer, Langmuir, 1996, 12, 1411-1413.
    26. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir, 1998, 14, 3160-3163.
    27. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Adv Mater, 1999, 11, 1307-1311.
    28. R. Z. Ma, K. Fukuda, T. Sasaki, M. Osada and Y. Bando, J Phys Chem B, 2005, 109, 6210-6214.
    29. A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio and H. Aritani, J Mater Sci, 2004, 39, 4239-4245.
    30. Q. Chen, G. H. Du, S. Zhang and L. M. Peng, Acta Crystallogr B, 2002, 58, 587-593.
    31. Q. Chen, W. Z. Zhou, G. H. Du and L. M. Peng, Adv Mater, 2002, 14, 1208-1211.
    32. X. M. Sun and Y. D. Li, Chem-Eur J, 2003, 9, 2229-2238.
    33. C. C. Tsai and H. S. Teng, Chem Mater, 2004, 16, 4352-4358.
    34. C. C. Tsai and H. S. Teng, Chem Mater, 2006, 18, 367-373.
    35. Z. Y. Yuan and B. L. Su, Colloid Surface A, 2004, 241, 173-183.
    36. D. V. Bavykin, V. N. Parmon, A. A. Lapkin and F. C. Walsh, J Mater Chem, 2004, 14, 3370-3377.
    37. D. V. Bavykin, J. M. Friedrich, A. A. Lapkin and F. C. Walsh, Chem Mater, 2006, 18, 1124-1129.
    38. M. Zhang, Z. S. Jin, J. W. Zhang, X. Y. Guo, H. J. Yang, W. Li, X. D. Wang and Z. J. Zhang, J Mol Catal a-Chem, 2004, 217, 203-210.
    39. B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang and N. Wang, Appl Phys Lett, 2003, 82, 281-283.
    40. D. J. Yang, H. W. Liu, Z. F. Zheng, Y. Yuan, J. C. Zhao, E. R. Waclawik, X. B. Ke and H. Y. Zhu, J Am Chem Soc, 2009, 131, 17885-17893.
    41. R. L. Burwell, Pure Appl Chem, 1976, 46, 71-90.
    42. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    43. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins and J. L. Schlenker, J Am Chem Soc, 1992, 114, 10834-10843.
    44. A. Sayari, Chem Mater, 1996, 8, 1840-1852.
    45. M. Hartmann, A. Poppl and L. Kevan, J Phys Chem-Us, 1996, 100, 9906-9910.
    46. B. Chakraborty, A. C. Pulikottil and B. Viswanathan, Catal Lett, 1996, 39, 63-65.
    47. C. Fox, Cosmet Toiletries, 1984, 99, 28-31.
    48. H. Dislich, J Non-Cryst Solids, 1986, 80, 115-121.
    49. L. L. Hench and J. K. West, Chem Rev, 1990, 90, 33-72.
    50. Y. Abe and T. Misono, J Polym Sci Pol Lett, 1982, 20, 205-210.
    51. T. Gunji, Y. Nagao, T. Misono and Y. Abe, J Polym Sci Pol Chem, 1992, 30, 1779-1787.
    52. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935.
    53. M. Kyotani, C. Yamaguchi, A. Goto, K. Sasaki, H. Matsui, Y. Koga and S. Fujiwara, Carbon, 2002, 40, 1583-1590.
    54. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto and H. Yasuda, Chem Mater, 1996, 8, 454-462.
    55. W. Lu and D. D. L. Chung, Carbon, 1997, 35, 427-430.
    56. Z. H. Hu, M. P. Srinivasan and Y. M. Ni, Adv Mater, 2000, 12, 62-65.
    57. T. W. Hyeon, S. J. Han, J. W. Lee and K. N. Sohn, Abstr Pap Am Chem S, 2001, 221, U505-U505.
    58. C. Lin, J. A. Ritter and B. N. Popov, J Electrochem Soc, 1999, 146, 3639-3643.
    59. D. R. Crow, “Principles and Applications of Electrochemistry”, 2nd Edition, Chapman and Hall, Ltd. London, 1979.
    60. 胡啟章編著, “電化學原理與方法”, 五南圖書, 2002.
    61. A. J. Bard and L. R. Faulkner, “Electrochemical Methods:Fundamentals and Applications”, 2nd Edition, John Wiley & Sons. Inc., Singapore, 1980.
    62. 田福助編著, “電化學理論與應用”, 第八版, 新科技, 2001.
    63. 林育潤, “以新穎的聚苯胺植入法增進碳電極之電化學超電容”, 國立成功大學化工研究所碩士論文, 2003.
    64. J. J. Leddy, Acs Sym Ser, 1989, 390, 478-509.
    65. A. M. Couper, D. Pletcher and F. C. Walsh, Chem Rev, 1990, 90, 837-865.
    66. 張光揮, “循環伏安置備含水釕銥氧化物於電化學電容器的應用”, 國立中正大學化工研究所碩士論文, 2000.
    67. H. D. Young, “Physics”, Addison-Wesley Publishing Co., New York, 1992.
    68. P. Soudan, H. A. Ho, L. Breau and D. Belanger, J Electrochem Soc, 2001, 148, A775-A782.
    69. M. Winter and R. J. Brodd, Chem Rev, 2004, 104, 4245-4269.
    70. R. Kotz and M. Carlen, Electrochim Acta, 2000, 45, 2483-2498.
    71. V. Khomenko, E. Frackowiak and F. Beguin, Electrochim Acta, 2005, 50, 2499-2506.
    72. E. Frackowiak, Phys Chem Chem Phys, 2007, 9, 1774-1785.
    73. 蔡文達、張仍奎, “金屬氧化物系列超高電容器簡介”, 材料會訊, 2001.
    74. A. Burke, J Power Sources, 2000, 91, 37-50.
    75. A. B. Fuertes, F. Pico and J. M. Rojo, J Power Sources, 2004, 133, 329-336.
    76. D. W. Wang, F. Li, M. Liu, G. Q. Lu and H. M. Cheng, Angewandte Chemie-International Edition, 2008, 47, 373-376.
    77. J. P. Zheng, P. J. Cygan and T. R. Jow, J Electrochem Soc, 1995, 142, 2699-2703.
    78. S. Sarangapani, B. V. Tilak and C. P. Chen, J Electrochem Soc, 1996, 143, 3791-3799.
    79. K. C. Liu and M. A. Anderson, J Electrochem Soc, 1996, 143, 124-130.
    80. V. Srinivasan and J. W. Weidner, J Electrochem Soc, 2000, 147, 880-885.
    81. R. P. Simpraga and B. E. Conway, Electrochim Acta, 1998, 43, 3045-3058.
    82. R. Otogawa, M. Morimitsu and M. Matsunaga, Electrochim Acta, 1998, 44, 1509-1513.
    83. J. M. Marracino, F. Coeuret and S. Langlois, Electrochim Acta, 1987, 32, 1303-1309.
    84. J. P. Zheng, P. J. Cygan and T. R. Jow, J Electrochem Soc, 1995, 142, 2699-2703.
    85. V. Srinivasan and J. W. Weidner, J Electrochem Soc, 1997, 144, L210-L213.
    86. S. Trasatti and G. Buzzanca, J Electroanal Chem, 1971, 29, A1-A5.
    87. S. Hadzijordanov, H. Angersteinkozlowska and B. E. Conway, J Electroanal Chem, 1975, 60, 359-362.
    88. W. Sugimoto, H. Iwata, Y. Murakami and Y. Takasu, J Electrochem Soc, 2004, 151, A1181-A1187.
    89. C. Lin, J. A. Ritter and B. N. Popov, J Electrochem Soc, 1998, 145, 4097-4103.
    90. T. C. Liu, W. G. Pell and B. E. Conway, Electrochim Acta, 1999, 44, 2829-2842.
    91. H. Y. Lee and J. B. Goodenough, J Solid State Chem, 1999, 148, 81-84.
    92. Y. U. Jeong and A. Manthiram, Electrochem Solid St, 2000, 3, 205-208.
    93. W. Sugimoto, T. Shibutani, Y. Murakami and Y. Takasu, Electrochem Solid St, 2002, 5, A170-A172.
    94. S. F. Chin, S. C. Pang and M. A. Anderson, J Electrochem Soc, 2002, 149, A379-A384.
    95. H. Y. Lee, V. Manivannan and J. B. Goodenough, Cr Acad Sci Ii C, 1999, 2, 565-577.
    96. K. R. Prasad and N. Miura, Electrochem Commun, 2004, 6, 1004-1008.
    97. K. R. Prasad and N. Miura, J Power Sources, 2004, 135, 354-360.
    98. S. C. Pang, M. A. Anderson and T. W. Chapman, J Electrochem Soc, 2000, 147, 444-450.
    99. S. C. Pang and M. A. Anderson, J Mater Res, 2000, 15, 2096-2106.
    100. S. F. Chin, S. C. Pang and M. A. Anderson, J Electrochem Soc, 2002, 149, A379-A384.
    101. 張國興, “應用於下世代超級電容器之奈米結構氧化釕的設計與剪裁”, 國立中正大學化工研究所博士論文, 2007.
    102. B. D. Cullity, “Elements of X-ray Diffraction”, Addison-Wesley New York, 1956.
    103. 康世芳, “染整工業21世紀水處理技術需求”, 第七屆水再生及再利用研討會, 2002.
    104. J. L. Whitten, Y. Zhang, M. Menon and G. Lucovsky, J Vac Sci Technol B, 2002, 20, 1710-1719.
    105. S. Larouche, H. Szymanowski, J. E. Klemberg-Sapieha, L. Martinu and S. C. Gujrathi, J Vac Sci Technol A, 2004, 22, 1200-1207.
    106. B. Chi, L. Zhao and T. Jin, J Phys Chem C, 2007, 111, 6189-6193.
    107. J. Wang, D. N. Tafen, J. P. Lewis, Z. L. Hong, A. Manivannan, M. J. Zhi, M. Li and N. Q. Wu, J Am Chem Soc, 2009, 131, 12290-12297.
    108. C. C. Hu, K. H. Chang and C. Y. Chou, Chem Mater, 2007, 19, 2112-2119.
    109. C. C. Hu, K. H. Chang, M. C. Lin and Y. T. Wu, Nano Lett, 2006, 6, 2690-2695.
    110. H. Y. Lee and J. B. Goodenough, J Solid State Chem, 1999, 144, 220-223.
    111. M. Toupin, T. Brousse and D. Belanger, Chem Mater, 2004, 16, 3184-3190.
    112. S. Wen, J. W. Lee, I. H. Yeo, J. Park and S. Mho, Electrochim Acta, 2004, 50, 849-855.

    下載圖示 校內:2016-07-13公開
    校外:2016-07-13公開
    QR CODE