研究生: |
陳岱璋 Chen, Dai-Jang |
---|---|
論文名稱: |
利用化學氣相沈積技術成長氧化鋅奈米柱結構及其特性分析 Investigation of Properties of ZnO Nanorad Structures by Chemical Vapor Deposition |
指導教授: |
李清庭
Lee, Ching-Ting 許進恭 Sheu, Jinn-Kong |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 67 |
中文關鍵詞: | 氧化鋅 、自我催化氣液固 |
外文關鍵詞: | self-catalyst VLS, ZnO |
相關次數: | 點閱:55 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鋅(ZnO)為一個直接能隙半導體,其具有與氮化鎵(GaN)相似的寬能隙(室溫下約3.37 eV),因此具備有藍光發光元件所需之特質,且在室溫下60 meV之激子束縛能,相較於氮化鎵(25 meV)來的更穩定,非常有利於在室溫下或是高溫中做為激子雷射之發展。此外,因為其特殊的晶格與能帶結構造成獨特的物理化學性質,使氧化鋅成為重要的奈米材料。
本篇論文採用管式高溫爐並利用化學氣相沈積方式成長氧化鋅奈米柱。氧化鋅奈米柱經由自我催化氣液固(vapor-liquid-solid, VLS)之成長機制,並藉由控制壓力、溫度、氣體流量…等條件,成長出較具方向性之奈米柱結構。
首先,以磁控濺鍍系統(RF-sputter),於p型矽基板上成長氧化鋅薄膜,作為成長之晶種。之後透過管式高溫爐將鋅粉以氣相沈積方式,經由氬氣的載流及與氧氣結合沈積於基板上,進而形成氧化鋅奈米結構。
由實驗結果可發現不同的溫度梯度影響奈米柱的形貌與尺寸,在適當的條件下,用場發射掃描式電子顯微鏡(FE-SEM),觀測以化學氣相沈積方式成長的氧化鋅奈米柱結構,其呈現六角柱形狀,直徑約50 ~ 500 nm,長度約略1 ~ 3 μm。並藉由高解析穿透式電子顯微鏡(HR-TEM)與X射線繞射儀(XRD),觀察到成長之奈米柱具有良好的單晶結構與c軸方向。且藉由光激發光譜(Photoluminescence, PL)發現紫外光波段比綠光波段強度強,同時比較時析光激發光譜(Time-Resolved Photo- luminescence, TR-PL),顯示成長出之奈米結構具有良好的發光性質,及較少的缺陷。
最後,將氧化鋅奈米柱結構運用在場發射元件上作為陰極電極,利用奈米柱結構達到良好的場發射特性。
Zinc oxide (ZnO) is a wide direct band gap semiconductor (3.37 eV, RT) which is similar to gallium nitride (GaN), so possesses the characteristics of blue light emitting devices. Furthermore, its exciton binding energy is 60 meV better than GaN (25 meV), and that is advantageous to development of excitonic emitting laser at room temperature or higher. ZnO possesses individual characteristics of physics and chemistry due to its individual structures of crystal and energy bandgap. Therefore, ZnO is an important nano-material.
In this study, by using self-catalyst vapor-liquid-solid (VLS) growth mechanism and chemical vapor deposition (CVD) method, we controlled pressure, temperature, gas flow to grow the ZnO nanorods in the tube furnace.
First, using RF magnetron sputtering system (RF-sputter) deposited ZnO thin film on p-type silicon substrate with provided a seed layer before nanorods growth. The zinc powders were heated to become vapor type and transported with argon carrier gas, and then deposited on the substrate in the tube furnace by CVD method.
According to the results, we found out that the various temperature gradients would influence the shape and size of nanorods. Under the suitable temperature gradient, the length and diameter of the ZnO nanorods were about 50 ~ 500 nm and 1 ~ 3 μm measured by field-emission scanning electron microscopy (FE-SEM). Using high-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD), we realized that the ZnO nanostructure growth by CVD is single crystal and has good c-axis orientation. According to the photoluminescence (PL) spectra, the intensity at the ultraviolet region is stronger than the green emission range. Besides, combining with the results of time-resolved photoluminescence (TR-PL), ZnO nanorods had better characteristics of light emitting due to its fewer defects.
Finally, ZnO nanorod structures were applied on field emission devices as cathode. Using nanorod structures carried out the good characteristics of field emission.
1-1.Richard P. Feynman, “There’s Plenty of Room at the Bottom”, the annual meeting of the American Physical Society (1959).
1-2.M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science, 292, 1897 (2001).
1-3.V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler and M. G. Bawendi, Science, 290, 314 (2000).
1-4.W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science, 295, 2425 (2002).
1-5.N. Yoshikazu and A. Seiji, Synthetic Met., 117, 207 (2001).
1-6.A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, J. Zuo and B. S. Zou, J. Phys.: Conf. Ser., 28, 12 (2006).
1-7.J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan and C. M. Lieber, Nature, 1441, 489 (2006).
1-8.P. G. Collins, M. Arnold and P. Avouris, Science, 292, 706 (2001).
1-9.Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim and C. M. Lieber, Science, 294, 1313 (2001).
1-10.M. C. McAlpine, R. S. Friedman, S. Jin, K. H. Lin, W. U. Wang and C. M. Lieber, Nano Lett., 3, 1531 (2003).
1-11.M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science, 292, 1897 (2001).
1-12.X. F. Duan, Y. Huang and C. M. Lieber, Nature, 421, 241 (2003).
1-13.Z. W. Pan, S. M. Mahurin, S. Dai and D. H. Lowndes, Nano Lett., 5, 723 (2005).
1-14.M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally and P. Yang, Science, 305, 1269 (2004).
2-1.C. R. Gorla and N. W. Emanetoglu, J. Appl. Phys., 85, 2595 (1999).
2-2.Q. Wan and T. H. Wang, Appl. Phys. Lett., 84, 3654 (2004).
2-3.M. H. Huang, S. Mao and H. Yan, Science, 292, 1897 (2001).
2-4.T. Nakamura, Y. Yamada, T. Kusumori and H. Minoura, Thin Solid Films, 411, 60 (2002).
2-5.C. F. Landes, S. Link, M. B. Mohamed, B. Nikoobakht and M. A. El-Sayed, Pure Appl. Chem., 74, 1675 (2002).
2-6.M. B. Mohamed, C. Burda and M. A. El-Sayed, Nano Lett., 1, 589 (2001).
2-7.H. L. Liu, C. C. Chen, C. T. Chia, C. C. Yeh, C. H. Chen, M. Y. Yu, S. Keller and S. P. DenBaars, Chem. Phys. Lett., 345, 245 (2001).
2-8.S. Hong, T. Joo, W. I. Park, Y. H. Jun and G. C. Yi, Appl. Phys. Lett., 83, 4157 (2003).
2-9.A. N. Baranov, G. N. Panin, T. W. Kang and Y. J. Oh, Nanotechnology, 16, 1918 (2005).
2-10.Y. L. Wu, A. I. Y. Tok, F. Y. C. Boey, X. T. Zeng and X. H. Zhang, Appl. Surf. Sci., 253, 5473 (2007).
2-11.A. Notargiacomo, E. Giovine, F. Evangelisti, V. Foglietti and R. Leoni, Mater. Sci. Eng. C, 19, 185 (2002).
2-12.T. Muller, K. H. Heinig and B. Schmidt, Mater. Sci. Eng. C, 19, 209 (2002).
2-13.Y. Cui, L. J. Lsuhon, M. S. Gudiksen, J. Wang and C. M. Leiber, Appl. Phys. Lett., 78, 2214 (2001).
2-14.H. Y. Peng, Z. W. Pan, L. Xu, X. H. Fan, N. Wang, C. S. Lee and S. T. Lee, Adv. Mater., 13, 317 (2001).
2-15.Y. Wu and P. Yang, Chem. Mater., 12, 605 (2000).
2-16.X. Duan, J. Wang and C. M. Lieber, Appl. Phys. Lett., 76, 1116 (2000).
2-17.R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964).
2-18.T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, Science, 270, 1791 (1995).
2-19.S. Wang and S. Yang, Chem. Mater., 13, 4794 (2001).
2-20.L. Cao, Z. Zhang, L. Sun, C. Gao, M. He, Y. Wang, Y. Li, X. Zhang, G. Li, J. Zhang and W. Wang, Adv. Mater., 13, 1701 (2001).
2-21.S. H. Park, S. Y. Seo, S. H. Kim and S. W. Han, Appl. Phys. Lett., 88, 251903 (2006).
2-22.C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, T. H. Lu, Y. K. Tseng and I. C. Chen, J. Vac. Sci. Technol. B, 23, 2292 (2005).
2-23.N. Wang, K. K. Fung, S. Wang and S. Yang, J. Cryst. Growth, 233, 226 (2001).
2-24.B. Zheng, Y. Wu, P. Yang and J. Liu, Adv. Mater., 14, 122 (2002).
2-25.J. Westwater, D. P. Gosain, S. Tomiya and S. Usui, J. Vac. Sci. Technol. B, 15, 554 (1997).
2-26.Z. Zhang, B. Wei, W. Ward, R. Vajtai, G. Ramanath and P. M. Ajayan, Adv. Mater., 13, 1767 (2001).
2-27.A. M. Morales and C. M. Lieber, Science, 279, 208 (1998).
2-28.Y. Wu and P. Yang, J. Am. Chem. Soc., 123, 3165 (2001).
2-29.X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun and J. J. Du, Chem. Phys. Lett., 328, 5 (2000).
2-30.Z. W. Pan, Z. R. Dai and Z. L. Wang, Science, 291, 1947 (2001).
2-31.R. Q. Zhang, Y. Lifshitz and S. T. Lee, Adv. Mater., 15, 635 (2003).
2-32.H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P, Yu, Y. Ding, Q. L. Hang and S. Q. Feng, Solid State Comm., 109, 677 (1999).
2-33.揭建胜, “準一維納米材料可控合成及其物性的研究”, 中國科學技術大學 (2004).
2-34.J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, Science, 287, 1471 (2000).
2-35.X. Lu, T. Hanrath, K. P. Johnston and B. A. Korgel, Nano Lett., 3, 93 (2003).
2-36.M. J. Edmondson, W. Zhou, S. A. Sieber, I. P. Jones, I. Gameson, P. A. Anderson and P. P. Edwards, Adv. Mater., 13, 1608 (2001).
2-37.J. V. Ryan, A. D. Berry, M. L. Anderson, J. W. Long, R. M. Stoud, V. M. Cepak, V. M. Browning, D. R. Rolison and C. I. Merzbacher, Nature, 406, 169 (2000).
2-38.D. Xu, D. Chen, Y. Xu, X. Shi, G. Guo, L. Gui and Y. Tang, Pure Appl. Chem., 72, 127 (2000).
2-39.W. Han, S. Fan, Q. Li and Y. Hu, Science, 277, 1287 (1997).
2-40.C. R. Martin, Science, 266, 1961 (1994).
2-41.D. Al-Mawlawi, C. Z. Liu and M. Moskovits, J. Mater. Res., 9, 1014 (1994).
2-42.T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen and T. P. Russell, Science, 290, 2126 (2000).
2-43.K. B. Lee, S. M. Lee and J. Cheon, Adv. Mater., 13, 517 (2001).
2-44.B. Ye, M. Trudeau and D. Antonelli, Adv. Mater., 13, 29 (2001).
2-45.Y. Liu, C. Zheng, W. Wang, C. Yin and G. Wang, Adv. Mater., 13, 1883 (2001).
2-46.Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Tan, Adv. Mater., 15, 353 (2003).
2-47.(a) A. J. Yin, J. Li, W. Jian, A. J. Bennett and J. M. Xua, Appl. Phys. Lett., 79, 1039 (2001). (b) G. S. Cheng, S. H. Chen, X. G. Zhu, Y. Q. Mao and L. D. Zhang, Mater. Sci. Eng. A, 286, 165 (2000).
3-1.Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu and I. C. Chen, J. Mater. Res., 18, 2837 (2003).
3-2.Beiser, “Concepts of Modern Physics”, 5th ed, pp. 69 ( McGraw-Hill, New York, 1995 ).
3-3.汪建民, “材料分析(Materials Analysis)”, (中國材料科學學會, 新竹市, 民國九十年).
3-4.R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928).
4-1.D. R. Lide, “CRC Handbook of Chemistry and Physics”, (CRC Press, Boca Raton, FL, 2002).
4-2.R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964).
4-3.J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee and S. T. Lee, Chem. Mater., 14, 1216 (2002).
4-4.B. D. Yao, Y. F. Chan and N. Wang , Appl. Phys. Lett., 81, 757 (2002).
4-5.T. B. Massalski, “Binary Alloy Phase Diagrams”, 2nd ed, pp.2938 (ASM International, Ohio, 1990).
4-6.Z. L. Wang, J. Phys.: Condens. Matter, 16, R829 (2004).
4-7.H. J. Fan, A. S. Barnard and M. Zacharias, Appl. Phys. Lett., 90, 143116 (2007).
4-8.G. Wulff and Z. Kristallogr, Mineral., 34, 449 (1901).
4-9.王瑞琪, “新穎氧化鋅奈米材料的成長與光電性質”, 國立成功大學材料科學及工程研究所 (2006).
4-10.A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton and N. M. Harrison, Phys. Rev. Lett., 86, 3811 (2001).
4-11.B. Meyer and D. Marx, Phys. Rev. B, 67, 035403 (2003).
4-12.D. R. Gaskell “Introduction to the Thermodynamics of Materials”, 3rd ed, pp. 169 and 548 ( Taylor and Francis, London 1995 ).
4-13.J. S. Lee, K. Park, M. I. Kang, I. W. Park, S. W. Kim, W. K. Cho, H. S. Han and S. Kima, J. Cryst. Growth, 254, 423 (2003).
4-14.B. D. Yao, Y. F. Chan and N. Wang , Appl. Phys. Lett., 81, 757 (2002).
4-15.A. Umar, Y. H. Im and Y. B. Hahn, J. Electron. Mater., 35, 758 (2006).
4-16.G. Shen and C. J. Lee, Cryst. Growth Des., 5, 1085 (2005).
4-17.JCPDS Card No. 36-1451.
4-18.B. J. Jin, S. H. Bae, S. Y. Lee and S. Im, Mater. Sci. Eng. B, 71, 301 (2000).
4-19.H. J. Egelhaaf and D. Oelkrug, J. Cryst. Growth, 161, 190 (1996).
4-20.C. J. Pan, H. C. Hsu, H. M. Cheng, C. Y. Wu, W. F. Hsieh, J. Solid State Chem., 180, 1188 (2007).
4-21.T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa and H. Koinumab, Appl. Phys. Lett., 82, 27 (2003).
4-22.P. S. Chen, T. H. Lee, L. W. Lai and C. T. Lee, J. Appl. Phys., 101, 24507 (2007).
4-23.R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928).
4-24.T. Minami, T. Miyata and T. Yamamoto, Surf. Coat. Technol., 108- 109, 583 (1998).
4-25.Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu and D. P. Yu, Appl. Phys. Lett., 86, 203115 (2005).