簡易檢索 / 詳目顯示

研究生: 楊瑞庭
Yang, Jui-Ting
論文名稱: 研磨氧化鎳奈米粒子電極界面層於有機鉛碘鈣鈦礦太陽能電池之研究
Grinding Nickel Oxide Nanoparticles as Electrode-Interlayer in Organolead Iodide Perovskite-Based Solar Cells
指導教授: 郭宗枋
Guo, Tzung-Fang
共同指導教授: 朱治偉
Chu, Chih-Wei
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 110
中文關鍵詞: 氧化鎳奈米粒子電極界面層平面異質接面鈣鈦礦太陽能電池金屬氧化物
外文關鍵詞: nickel oxide nanoparticles, electrode-interlayer, planar heterojunction perovskite solar cells, metal oxide
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要研究鈣鈦礦太陽能電池中的P型電極界面層,我們利用物理研磨方式來製備氧化鎳奈米粒子(NiO Nanoparticles),奈米尺度達到數十奈米,並將金屬氧化物運用於平面異質接面鈣鈦礦太陽能電池,不僅成功取代水溶性電極界面層PEDOT:PSS,由於氧化鎳之能階與鈣鈦礦(CH3NH3PbI3)越匹配越能減少激子在界面的損耗,因此能增加元件的開路電壓和短路電流密度,進而提升元件轉換效率,而氧化鎳也因此在近年來廣受探究。相較於溶膠凝膠法(sol-gel)的氧化鎳電洞傳輸層製備方法,本論文所使用的研磨(Grinding)製備方式更能提升氧化鎳的製備穩定性以及大幅降低後續高溫退火結晶的繁雜過程,提供一個低成本且製程易於未來大面積量產太陽能電池之應用。
    在此論文中我們針對Grinding NiO NPs進行多種物理特性分析,例如:粒徑分析、能階分析、元素分析,接著多方面比較此研磨製程與其他氧化鎳製備方試及PEDOT:PSS的差異,例如:薄膜形貌分析、光致發光、AFM、SEM,最後成功使用氧化鎳奈米粒子做為電極界面的元件光電轉換效率能大幅提升到13.92% 且填充因子達到74%。此外,藉由金屬氧化物當作電極界面層更可提升元件的壽命。

    This thesis will focus on p-type electrode-interlayer of perovskite solar cells. We utilize physical grinding method to prepare nickel oxide nanoparticles which can reach less than one hundred nanometer. We successfully apply metal oxide as a carrier transporting layer into planar heterojunction perovskite solar cells to substitute PEDOT:PSS. Due to the energy level alignment, it can reduce the carrier loss at the interface between CH3NH3PbI3 and NiO NPs. As a result, the higher open circuit voltage and short circuit current density will both enhance which leads to a higher power conversion efficiency. Comparing to preparation of sol-gel NiOx, our grinding method not only provide a stable process but also simplify the complicated and high temperature annealing process.
    We study several physical properties of grinding NiO NPs such as partical size, UPS, XPS and XRD analysis. Furthermore, we take a detail comparison of sol-gel NiOx, PEDOT:PSS and grinding NiO NPs such as thin film, PL, AFM, SEM and TRPL analysis. Finally, we successfully demonstrate a NiO NPs based device which can reach 13.92% efficiency and 0.74 fill factor. In addition, taking advantage of metal oxide which isn’t sensitive to moisture and oxygen and even boost the stability of device to more than 30 days but still maintain 90% performance.

    中文摘要 I Abstract II 誌謝 III Table of Contents V List of Table IX List of Figure X Chapter 1 Introduction 1 1-1 General background information 1 1-2 History of solar cells 2 1-2-1 First generation solar cell 3 1-2-2 Second generation solar cell 3 1-2-3 Third generation solar cell 4 1-3 Perovskite solar cells 5 1-3-1 Introduction of perovskite solar cell 5 1-3-2 History of perovskite solar cell 6 1-4 Motivation and Scope 11 1-4-1 Motivation of the study 11 1-4-2 Scope of the thesis 12 Chapter 2 Solar cells operation principle and perovskite solar cell technique 14 2-1 Solar cells operation principle 14 2-1-1 Inorganic solar cells operation principle 14 2-1-2 Organic solar cells operation principle 16 2-2 Electrode-Interlayer application in perovskite solar cell 19 2-2-1 Hole transporting layer review 19 2-2-2 Electron transporting layer review 21 2-3 Fabrication of perovskite film 23 2-3-1 Single-step spin-coating process 23 2-3-2 Two-step sequential deposition process 24 2-3-3 Co-evaporation 25 2-3-4 Vapor-assisted solution process 26 2-3-5 Interdiffusion of solution process 27 2-4 Advanced device engineering 29 2-4-1 Solvent engineering 29 2-4-2 Process engineering 31 2-4-3 Band gap engineering 32 2-5 Issues and challenges of perovskite solar cells 35 2-5-1 Stability 35 2-5-2 Toxicity 37 2-6 Characteristics measurement 38 2-6-1 Standard source definition 38 2-6-2 Photovoltaic parameter of solar cell 40 2-7 Summary 43 Chapter 3 Device fabrication and Characterization equipments 44 3-1 Device structure of planar heterojunction perovskite solar cells 44 3-2 The fabrication of perovskite solar cell 46 3-2-1 ITO substrate cutting and etching 46 3-2-2 ITO substrate cleaning 46 3-2-3 Preparation of grinding nickel oxide 47 3-2-4 Fabrication of perovskite active layer 48 3-2-5 Fabrication of electron transporting layer and hole blocking layer 50 3-2-6 Fabrication of Al electrode 51 3-3 Characterization of thin film 52 3-3-1 Scanning electron microscope (SEM) 52 3-3-2 Atomic force microscope (AFM) 53 3-3-3 Ultraviolet–visible spectroscopy (UV-vis) 53 3-3-4 Photoluminescence (PL) spectroscopy 54 3-3-5 Ultraviolet Photoelectron Spectroscopy 55 3-4 Characterization of device performance 57 3-4-1 Current density-voltage (J-V) measurement system 57 3-4-2 External quantum efficiency (EQE) 58 3-5 Summary 60 Chapter 4 Grinding nickel oxide as electrode-interlayer in perovskite solar cell 61 4-1 Introduction 61 4-2 Physical properties analysis of NiO NPs 63 4-2-1 Dynamic light scattering analysis 63 4-2-2 X-ray diffraction analysis 65 4-2-3 X-ray photoelectron spectroscopy analysis 67 4-2-4 Ultraviolet photoelectron spectroscopy analysis 68 4-3 Analysis of NiO NPs and PEDOT:PSS as a HTL in perovskite solar cell 71 4-3-1 Morphology analysis for NiO NPs 71 4-3-2 Transmittance analysis for NiO NPs and PEDOT:PSS 72 4-3-3 Morphology analysis with perovskite layer 73 4-3-4 PL and TRPL analysis for NiO NPs and PEDOT:PSS 74 4-3-5 Device performance 77 4-4 Analysis of different nickel oxide process as a HTL in perovskite solar cells 79 4-4-1 PL analysis 79 4-4-2 Absorption analysis 80 4-4-3 Morphology analysis 82 4-4-4 Device performance 84 4-5 Device performance with NiO NPs as a HTL in perovskite solar cells 87 4-5-1 Different concentration 88 4-5-2 Multilayer structure 90 4-5-3 Different spin speed with bilayers structure 93 4-5-4 Device stability and EQE analysis 95 4-6 Summary 99 Chapter 5 Conclusion and Future perspectives 101 5-1 Conclusion 101 5-2 Future work 102 5-2-1 Substitution of dispersion solvent 102 5-2-2 Double grinding metal oxide transporting layer 102 5-2-3 Mechanism study of Ni2+ and Ni3+ composition in nickel oxide 104 Reference 105

    [1] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National Renewable Energy Laboratory, NREL, accessed 10 June 2017).
    [2] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys. 25, 676 (1954).
    [3] A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. D. Wolf, C. Ballif, “>21% efficient silicon heterojunction solar cells on n- and p-type wafers compared”, IEEE J. Photovolt. 3, 83 (2013).
    [4] D. E. Carlson, C. R. Wronski, “Amorphous silicon solar cell”, Appl. Phys. Lett. 28, 671 (1976).
    [5] N. A. Abdul-Manaf, H. I. Salim, M. L. Madugu, O. I. Olusola, I. M. Dharmadasa, “Electro-plating and characterisation of CdTe thin films using CdCl2 as the Cadmium source”, Energies 8, 10883 (2015).
    [6] J. S. Ward, B. Egaas, R. Noufi, M. Contreras, K. Ramanathan, C. Osterwald, K. Emery, “Cu(In,Ga)Se2 solar cells measured under low flux optical concentration”, 40th IEEE Photovoltaic Spec. Conf. 2934 (2014).
    [7] W. Kong, A. Rahimi-Iman, Gang Bi, X. Dai, H. Wu, “Oxygen intercalation induced by photocatalysis on the surface of hybrid lead halide perovskites”, J. Phys. Chem. C 120, 7606 (2016).
    [8] S. Bai, Y. Jin, F. Gao, “Organometal halide perovskites for photovoltaic applications”, Adv. Funct. Mater. (eds A. Tiwari and L. Uzun), John Wiley & Sons, Inc., Hoboken, NJ, USA, 535 (2015).
    [9] H. -S. Kim, S. -H. Im, N. -G. Park, “Organolead halide perovskite: new horizons in solar cell research”, J. Phys. Chem. C 118, 5615 (2014).
    [10] D. B. Mitzi, C. A. Field, W. T. A. Harrison, A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure”, Nature 369, 467 (1994).
    [11] G. C. Papavassiliou, “Three-and low-dimensional inorganic semiconductors”, Prog. Solid St. Chem. 25, 125 (1997).
    [12] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3”, Solid State Commun. 127, 619 (2003).
    [13] M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature 501, 395 (2013).
    [14] A. Kojima, K. Teshima, T. Miyasaka, Y. Shirai, “Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2)”, 210th ECS Meeting, Oct. 29 (2006) Cancun, Mexico.
    [15] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (5),” 212th ECS Meeting, Oct. 9 (2007) Washington, D.C.
    [16] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc. 131, 6050 (2009).
    [17] J. -H. Im, C. -R. Lee, J. -W. Lee, S. -W. Park, N. -G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell”, Nanoscale 3, 4088 (2011).
    [18] H. -S. Kim, C. -R. Lee, J. -H. Im, K. -B. Lee, T. Moehl, A. Marchioro, S. -J. Moon, R. Humphry-Baker, J. -H. Yum, J. E. Moser, M. Grätzel, N. -G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%”, Sci Rep 2, 591 (2012).
    [19] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites”, Science 338, 643 (2012).
    [20] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. -S. Lim, J. A. Chang, Y. H. Lee, H. -J. Kim, A. Sarkar, Md. K. Nazeeruddin, M. Grätzel, S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing compound and polymeric hole conductors”, Nat. Photonics 7, 486 (2013).
    [21] J. -Y. Jeng, Y. -F. Chiang, M. -H. Lee, S. -R. Peng, T. -F. Guo, P. Chen, T. -C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells”, Adv. Mater. 25, 3727 (2013).
    [22] N. Pellet, P. Gao, G. Gregori, T. -Y. Yang, M. K. Nazeeruddin, J. Maier, M. Grätzel, “Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting”, Angew. Chem.-Int. Edit. 53, 3151 (2014).
    [23] H. -S. Ko, J. -W. Lee, N. -G. Park, “15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3”, J. Mater. Chem. A 3, 8808 (2015).
    [24] M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J. -P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K. -H. Dahmen, F. D. Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Grätzel, M. K. Nazeeruddin, “A molecularly engineered hole-transporting material for efficient perovskite solar cells”, Nat. Energy 1, 15017 (2016).
    [25] J. -Y. Jeng, K. -C. Chen, T. -Y. Chiang, P. -Y. Lin, T. -D. Tsai, Y. -C. Chang, T. -F. Guo, P. Chen, T. -C. Wen, Y. -J. Hsu, “Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells”, Adv. Mater. 26, 4107 (2014).
    [26] S. R. Forrest, “The limits to organic photovoltaic cell efficiency”, MRS Bull. 30, 28 (2005).
    [27] C. -G. Wu, C. -H. Chiang, Z. -L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, M. Grätzel, “High efficiency stable inverted perovskite solar cells without current hysteresis”, Energy Environ. Sci. 8, 2725 (2015).
    [28] Q. Wang, Q. Dong, T. Li, A. Gruverman, J. Huang, “Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells”, Adv. Mater. 28, 6734 (2016).
    [29] W. H. Nguyen, C. D. Bailie, E. L. Unger, M. D. McGehee, “Enhancing the hole-conductivity of Spiro-OMeTAD without oxygen or lithium salts by using Spiro(TFSI)2 in perovskite and dye-sensitized solar cells”, J. Am. Chem. Soc. 136, 10996 (2014).
    [30] F. Wang, H. Yu, H. Xu, N. Zhao, “HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells”, Adv. Funct. Mater. 25, 1120 (2015).
    [31] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells”, Nature 517, 476 (2015).
    [32] J. H. Kim, P. -W. Liang, S. T. Williams, N. Cho, C. -C. Chueh, M. S. Glaz, D. S. Ginger, A. K. -Y. Jen, “High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer”, Adv. Mater. 27, 695 (2015).
    [33] S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%”, Nano Lett. 15, 3723 (2015).
    [34] H. -H. Wang, Q. Chen, H. Zhou, L. Song , Z. S. Louis, N. D. Marco, Y. Fang, P. Sun, T. -B. Song, H. Chen, Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives”, J. Mater. Chem. A 3, 9108 (2015).
    [35] W. Yan, Y. Li, Y. Li, S. Ye, Z. Liu, S. Wang, Z. Bian, C. Huang, “Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer”, Nano Res. 8, 2474 (2015).
    [36] Y. Bai, H. Yu, Z. Zhu, K. Jiang, T. Zhang, N. Zhao, S. Yang, H. Yan, “High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer”, J. Mater. Chem. A 3, 9098 (2015).
    [37] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange”, Science 348, 1234 (2015).
    [38] G. Yang, H. Tao, P. Qin, W. Ke, G. Fang, “Recent progress in electron transport layers for efficient perovskite solar cells”, J. Mater. Chem. A 4, 3970 (2016).
    [39] J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. -W. Lee, S. H. Im, “Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate”, Adv. Mater. 27, 3424 (2015).
    [40] F. Giordano, A. Abate, J. P. C. Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt, M. Grätzel, “Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells”, Nat. Commun. 7, 10379 (2016).
    [41] Z. Liu, Q. Chen, Z. Hong, H. Zhou, X. Xu, N. D. Marco, P. Sun, Z. Zhou, Y. -B. Cheng, Y. Yang, “Low-temperature TiOx compact layer for planar heterojunction perovskite solar cells”, ACS Appl. Mater. Interfaces 8, 11076 (2016).
    [42] D. Yang, R. Yang, J. Zhang, Z. Yang, S. Liu, C. Li, “High efficiency flexible perovskite solar cells using superior low temperature TiO2”, Energy Environ. Sci. 8, 3208 (2015).
    [43] Y. Wu, X. Yang, H. Chen, K. Zhang, C. Qin, J. Liu, W. Peng, A. Islam, E. Bi, F. Ye, M. Yin, P. Zhang, L. Han, “Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells”, Appl. Phys. Express 7, 052301 (2014).
    [44] W. Qiu, U. W. Paetzold, R. Gehlhaar, V. Smirnov, H. -G. Boyen, J. G. Tait, B Conings, W. Zhang, C. B. Nielsen, I. McCulloch, L. Froyen, P. Heremans, D. Cheyns, “An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates”, J. Mater. Chem. A 3, 22824 (2015).
    [45] B. Conings, L. Baeten, T. Jacobs, R. Dera, J. D’Haen, J. Manca, H. -G. Boyen, “An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells”, APL Mater. 2, 081505 (2014).
    [46] D. Liu, T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques”, Nat. Photonics 8, 133 (2014).
    [47] J. Song, E. Zheng, J. Bian, X. -F. Wang, W. Tian, Y. Sanehire, T. Miyasaka, “Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells”, J. Mater. Chem. A 3, 10837 (2015).
    [48] J. -H. Im, H. -S. Kim, N. -G. Park, “Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3”, APL Mater. 2, 081510 (2014).
    [49] A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, M. Grätzel, “Effect of annealing temperature on film morphology of organic-inorganic hybrid perovskite solid-state solar cells”, Adv. Funct. Mater. 24, 3250 (2014).
    [50] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process”, Energy Environ. Sci. 7, 2359 (2014).
    [51] J. Burschka, N. Pellet, S. -J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature 499, 316 (2013).
    [52] Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, “Retarding the crystallization of PbI2 for highly reproducible planar-structured solar cells via sequential deposition”, Energy Environ. Sci. 7, 2934 (2014).
    [53] S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, “NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells”, Chem. Mat. 26, 1485 (2014).
    [54] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. -S. Duan, H. -H. Wang, Y. Liu, G. Li, Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process”, J. Am. Chem. Soc. 136, 622 (2014).
    [55] C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao, J. Huang, “Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing”, J. Mater. Chem. A 2, 18508 (2014).
    [56] Y. -J. Jeon, S. Lee, R. Kang, J. -E. Kim, J. -S. Yeo, S. -H. Lee, S. -S. Kim, J. -M. Yun, D. -Y. Kim, “Planar heterojunction perovskite solarcells with superior reproducibility”, Sci. Rep. 4, 6953 (2014).
    [57] H. Tsai, W. Nie, P. Cheruku, N. H. Mack, P. Xu, G. Gupta, A.D. Mohite, H. -L. Wang, “Optimizing composition and morphology for large-grain perovskite solar cells via chemical control”, Chem. Mat. 27, 5570 (2015).
    [58] Y. Chen, Y. Zhao, Z. Liang, “Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl”, Chem. Mat. 27, 1448 (2015).
    [59] Y. C. Zheng, S. Yang, X. Chen, Y. Chen, Y. Hou, H. G. Yang, “Thermal-induced volmer–weber growth behavior for planar heterojunction perovskites solar cells”, Chem. Mat. 27, 5116 (2015).
    [60] W. Nie, H. Tsai, R. Asadpour, J. -C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. -L. Wang, A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science 347, 522 (2015).
    [61] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, “Lead-free solid-state organic-inorganic halide perovskite solar cells”, Nat. Photonics 8, 489 (2014).
    [62] Y. Rong, L. Liu, A. Mei, X. Li, H. Han, “Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells”, Adv. Energy Mater. 5, 1501066 (2015).
    [63] G. Niu, X. Guo, L. Wang, “Review of recent progress in chemical stability of perovskite solar cells”, J. Mater. Chem. A 3, 8970 (2015).
    [64] T. Supasai, N. Rujisamphen, K. Ullrich, A. Chemseddine, T. Dittrich, “Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers”, Appl. Phys. Lett. 103, 183906 (2013).
    [65] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells”, Nat. Commun. 4, 2885 (2013).
    [66] S. Ito, S. Tanaka, K. Manabe, H. Nishino, “Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells”, J. Phys. Chem. C 118, 16995 (2014).
    [67] J. -C. Hebig, I. Kühn, J. Flohre, T. Kirchartz, “Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications”, ACS Energy Lett. 1, 309 (2016).
    [68] U. Kwon, B. -G. Kim, D. C. Nguyen, J. -H. Park, N. Y. Ha, S. -J. Kim, S. H. Ko, S. Lee, D. Lee, H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells”, Sci. Rep. 6, 30759 (2016).
    [69] Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou, Z. Zhao, Q. Chen, Y. -B. Cheng, H. Zhou, “Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells”, J. Mater. Chem. A 5, 6597 (2017).
    [70] Y. -K. Chih, J. -C. Wang, R. -T. Yang, C. -C. Liu, Y. -C. Chang, Y. -S. Fu, W. -C. Lai, P. Chen, T. -C. Wen, Y. -C. Huang, C. -S. Tsao, T. -F. Guo, “NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite-based light-emitting diodes”, Adv. Mater. 28, 8687 (2016).
    [71] P. -Y. Lin, T. Wu, M. Ahmadi, L. Liu, S. Haacke, T. -F. Guo, B. Hu, “Simultaneously enhancing dissociation and suppressing recombination in perovskite solar cells”, Nano Energy 36, 95 (2017).
    [72] Z. Zhu, Y. Bai, X. Liu, C. -C. Chueh, S. Yang, A. K. -Y. Jen, “Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer”, Adv. Mater. 28, 6478 (2016)
    [73] X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, J. Shao, “Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts”, ACS Nano 10, 3630 (2016).
    [74] K. -C. Wang, P. -S. Shen, M. -H. Li, S. Chen, M. -W. Lin, P. Chen, T. -F. Guo, “Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells”, ACS Appl. Mater. Interfaces 6, 11851 (2014).

    無法下載圖示 校內:2022-08-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE