簡易檢索 / 詳目顯示

研究生: 黃詩涵
Huang, Shih-Han
論文名稱: 以液相輔助固相反應法製備鋯磷矽酸鈉之離子導體及其阻抗分析
Preparation of sodium zirconophosphossilicate ionic conductor through solution-assisted solid-state reaction method and its impedance analysis
指導教授: 黃啓原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 95
中文關鍵詞: 離子導體鋯磷矽酸鈉
外文關鍵詞: NASICON, ionic conductor
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於使用固相反應法合成 NASICON 材料時會因為原料粉末容易混合不均勻而產生 ZrO2 二次相,因此本研究是使用液相輔助固相反應法合成
    Na1+xZr2-x/3SixP3-xO12-2x/3 ( x =2 ) 的 NASICON 材料,使用兩個煅燒階段合成接近單一相之 NASICON 材料,並使用 XRD 進行煅燒粉末的相鑑定,由實驗結果可以得知經過 600℃/6 h-1000℃/12 h 兩個階段之煅燒後可以合成接近單一相的 NASICON 材料,再將煅燒後的粉末進行二次球磨、造粒,且以單軸加壓的方式壓胚成型後再進行燒結,燒結後再進行密度、SEM、阻抗分析及XRD的量測及分析。阻抗分析量測溫度範圍為室溫至 500℃,由實驗之結果顯示,其導電率會隨著量測溫度上升而有增加的趨勢,且燒結時間越長,會有較佳之導電率,由微結構圖中可以觀察到燒結時間越長其晶粒較大,可以使鈉離子在移動時遇到的阻礙較小而有較小之電阻及較大之導電率。

    The NASICON materials of sodium zirconophosphossilicate (NZSP) has four types of cations, however, it is difficult to mix four types of cations evenly. The aim of this study is to synthesize sodium zirconophosphossilicate (NZSP) that contains less ZrO2 and closes to mono-phase, therefore, the NASICON material of sodium zirconophosphossilicate (NZSP) is prepared by means of solution‐assisted solid‐state reaction in this study. Calcinated at the calcination condition of 600℃/6 h-1000℃/12 h is close to mono-phase. By means of Rietveld refinement, the crystal structure of Na3Zr2-2/3Si2PO12-4/3 is monoclinic and the space group is C2/c. The relative density of sintering bulks sintered at 1200℃/5 h and 1200℃/10 h are all above 90 %. The longer sintering time, the larger conductivity and the smaller activation energy of conductivity. It can be estimated from the average grain size calculated by the figure of microstructure. The grain will change the area of the grain boundary when growing, which will reduce the area of the grain boundary, it will improve the movement of sodium ions. The smaller the barrier encountered when sodium ions move, the lower the resistance, so the conductivity will be better

    摘要 I 致謝 XX 目錄 XXI 圖目錄 XXIV 表目錄 XXVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機及方向 2 1-3 研究目的 3 第二章 文獻回顧與理論基礎 4 2-1 NZP 型材料之簡介 4 2-1-1 NZP 型材料之晶體結構與特性 4 2-1-2 NZP 型材料之重要性質 11 2-2 NZSP 型之 NASICON 材料 12 2-2-1 NZSP 型材料之晶體結構及特性 13 2-2-2 NZSP 型材料其晶體結構中之 Bottleneck 15 2-2-3 NASICON 材料之應用 17 2-3 NASICON 粉末之合成 17 2-4 電性分析 20 2-4-1 交流阻抗分析 20 2-4-2 Electric Modulus 分析 30 2-4-3 等效電路之設計與常相位角元件 34 2-4-4 陶瓷體導電率分析 34 第三章 實驗方法與分析 35 3-1 粉末製備及分析 35 3-1-1 起始原料 35 3-1-2 鋯磷矽酸鈉 (NZSP) 粉末製備 36 3-1-3 粉末之熱差/熱重分析 42 3-2 煅燒粉末之製備 42 3-3 煅燒粉末分析 43 3-3-1 X 光繞射儀 43 3-3-2 XRF 分析 44 3-3-3 掃描式電子顯微鏡 44 3-4 生胚之製備 45 3-5 燒結體之製備 45 3-6 燒結體分析 46 3-6-1 密度量測 46 3-6-2 X 光繞射儀 46 3-6-3 掃描式電子顯微鏡 48 3-6-4 導電率量測 49 3-6-5 活化能計算 50 第四章 結果與討論 51 4-1 起始粉末分析 51 4-1-1 碳酸鈉熱重/熱差分析 51 4-1-2 粉末之微結構分析 52 4-2 混合後粉末之熱重/熱差分析 55 4-3 粉末煅燒分析 57 4-3-1 煅燒粉末之微結構 57 4-3-2 結晶相分析 59 4-3-3 Rietveld refinement 64 4-3-4 XRF 分析 66 4-4 燒結體分析 67 4-4-1 結晶相分析 67 4-4-2 燒結體之微結構分析 68 4-5 電性分析 69 4-5-1 交流阻抗分析 69 4-5-2 等效電路之設計 70 4-5-3 導電率行為分析 81 4-5-4 活化能 87 第五章 結論 91 參考文獻 93

    1. A. Ahmad, T.A. Wheat, A.K. Kuriakose, J.D. Canaday and A.G. McDonald, "Dependence of the properties of NASICON on the composition and processing," Solid State Ionics, vol. 24, no. 1, pp. 89-97, 1987.
    2. J. Alamo and R. Roy, "Crystal-chemistry of the NaZr2(PO4)3, NZP or CTP, structure family," Journal of Materials Science, vol. 21, no. 2, pp. 444-450, 1986.
    3. N. Anantharamulu, K.K. Rao, G. Rambabu, B.V. Kumar, V. Radha and M. Vithal, "A wide-ranging review on Nasicon type materials," Journal of materials science, vol. 46, no. 9, pp. 2821-2837, 2011.
    4. J. Bauerle, "Study of solid electrolyte polarization by a complex admittance method," Journal of Physics and Chemistry of Solids, vol. 30, no. 12, pp. 2657-2670, 1969.
    5. M. Bayard and G. Barna, "A complex impedance analysis of the ionic conductivity of Na1+ xZr2SixP3− xO12 ceramics," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 91, no. 2, pp. 201-209, 1978.
    6. O. Bohnke, S. Ronchetti and D. Mazza, "Conductivity measurements on nasicon and nasicon-modified materials," Solid State Ionics, vol. 122, no. 1-4, pp. 127-136, 1999.
    7. J. Boilot, J. Salanie, G. Desplanches and D. Le Potier, "Phase transformation in Na1+ xSixZr2P3− xO12 compounds," Materials Research Bulletin, vol. 14, no. 11, pp. 1469-1477, 1979.
    8. A. Clearfield, P. Jerus and R.N. Cotman, "Hydrothermal and solid state synthesis of sodium zirconium silicophosphates," Solid State Ionics, vol. 5, pp. 301-304, 1981.
    9. M. Cuadrado and J. Alamo, "Cr-doped zirconium phosphate pigments," British ceramic. Transactions and journal, vol. 87, no. 7, pp. 141-144, 1988.
    10. M.L. Di Vona, E. Traversa and S. Licoccia, "Nonhydrolytic synthesis of NASICON of composition Na3Zr2Si2PO12: a spectroscopic study," Chemistry of materials, vol. 13, no. 1, pp. 141-144, 2001.
    11. J. Goodenough, H.-P. Hong and J. Kafalas, "Fast Na+-ion transport in skeleton structures," Materials Research Bulletin, vol. 11, no. 2, pp. 203-220, 1976.
    12. M. Guin, F. Tietz and O. Guillon, "New promising NASICON material as solid electrolyte for sodium-ion batteries: Correlation between composition, crystal structure and ionic conductivity of Na-3 (+) xSc2SixP3 (-) O-x(12)," Solid State Ionics, vol. 293, pp. 18-26, 2016.
    13. L.O. Hagman, P. Kierkegaard and P. Karvonen, "The crystal structure of NaMe2 IV (PO4) 3; MeIV= Ge, Ti, Zr," Acta Chem. Scand, vol. 22, no. 6, pp. 1822-32, 1968.
    14. B.B. He, U. Preckwinkel and K.L. Smith, "Fundamentals of two-dimensional X-ray diffraction (XRD2)," Advances in X-ray Analysis, vol. 43, pp. 273-280, 2000.
    15. H.-P. Hong, "Crystal structures and crystal chemistry in the system Na1+ xZr2SixP3− xO12," Materials Research Bulletin, vol. 11, no. 2, pp. 173-182, 1976.
    16. C.-Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials. 1990, Pennsylvania State University.
    17. A. Ignaszak, P. Pasierb, R. Gajerski and S. Komornicki, "Synthesis and properties of Nasicon-type materials," Thermochimica acta, vol. 426, no. 1-2, pp. 7-14, 2005.
    18. A.G. Jolley, G. Cohn, G.T. Hitz and E.D. Wachsman, "Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na 3 Zr 2 Si 2 PO 12," Ionics, vol. 21, no. 11, pp. 3031-3038, 2015.
    19. F. Lalère, J.-B. Leriche, M. Courty, S. Boulineau, V. Viallet, C. Masquelier and V. Seznec, "An all-solid state NASICON sodium battery operating at 200 C," Journal of Power Sources, vol. 247, pp. 975-980, 2014.
    20. S. Lunghammer, Q. Ma, D. Rettenwander, I. Hanzu, F. Tietz and H.M.R. Wilkening, "Bulk and grain-boundary ionic conductivity in sodium zirconophosphosilicate Na3Zr2(SiO4)(2)PO4 (NASICON)," Chemical Physics Letters, vol. 701, pp. 147-150, 2018.
    21. J.R. Macdonald and E. Barsoukov, "Impedance spectroscopy: theory, experiment, and applications," History, vol. 1, no. 8, pp. 1-13, 2005.
    22. S. Naqash, Q.L. Ma, F. Tietz and O. Guillon, "Na3Zr2(SiO4)(2)(PO4) prepared by a solution-assisted solid state reaction," Solid State Ionics, vol. 302, pp. 83-91, 2017.
    23. S. Naqash, D. Sebold, F. Tietz and O. Guillon, "Microstructure-conductivity relationship of Na3Zr2(SiO4)(2)(PO4) ceramics," Journal of the American Ceramic Society, vol. 102, no. 3, pp. 1057-1070, 2019.
    24. S. Okonenko, S.Y. Stefanovich, V. Kalinin and Y.N. Venevtsev, "New ferroelectric Na3Sc2 (PO4) 3," Soy. Phys. Solid State, vol. 20, pp. 1647, 1978.
    25. D. Quon, T. Wheat and W. Nesbitt, "Synthesis, characterization and fabrication of Na1+ xZr2SixP3− xO12," Materials Research Bulletin, vol. 15, no. 11, pp. 1533-1539, 1980.
    26. D. Rettenwander, G.n.J. Redhammer, M. Guin, A. Benisek, H. Krüger, O. Guillon, M. Wilkening, F. Tietz and J.r. Fleig, "Arrhenius Behavior of the Bulk Na-Ion Conductivity in Na3Sc2 (PO4) 3 Single Crystals Observed by Microcontact Impedance Spectroscopy," Chemistry of Materials, vol. 30, no. 5, pp. 1776-1781, 2018.
    27. R. Roy, E. Vance and J. Alamo, "[NZP], A new radiophase for ceramic nuclear waste forms," Materials Research Bulletin, vol. 17, no. 5, pp. 585-589, 1982.
    28. Y. Shimizu and T. Ushijima, "Sol-gel processing of NASICON thin film using aqueous complex precursor," Solid State Ionics, vol. 132, no. 1-2, pp. 143-148, 2000.
    29. D.C. Sinclair and A.R. West, "Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance," Journal of Applied Physics, vol. 66, no. 8, pp. 3850-3856, 1989.
    30. S. Song and F. Placido, "The influence of phase probability distributions on impedance spectroscopy," Journal of Statistical Mechanics: Theory and Experiment, vol. 2004, no. 10, pp. P10018, 2004.
    31. T. Takahashi, K. Kuwabara and M. Shibata, "Solid-state ionics-conductivities of Na+ ion conductors based on NASICON," Solid State Ionics, vol. 1, no. 3-4, pp. 163-175, 1980.
    32. U. Vonalpen, M.F. Bell and H.H. Hofer, "Compositional dependence of the electrochemical and structural parameters in the NASICON system (Na1+xSixZr2P3-xO12)," Solid State Ionics, vol. 3-4, no. AUG, pp. 215-218, 1981.
    33. B. Wang, X.S. Liang, F.M. Liu, T.G. Zhong, C. Zhao, G.Y. Lu and B.F. Quan, "Synthesis and Characterization of NASICON Nanoparticles by Sol-gel Method," Chemical Research in Chinese Universities, vol. 25, no. 1, pp. 13-16, 2009.
    34. L. Wang and T. Liang, "Ceramics for high level radioactive waste solidification," Journal of Advanced Ceramics, vol. 1, no. 3, pp. 194-203, 2012.
    35. P. Yadav and M.C. Bhatnagar, "Structural studies of NASICON material of different compositions by sol-gel method," Ceramics International, vol. 38, no. 2, pp. 1731-1735, 2012.
    36. L. Yang, S. Komarneni and R. Roy, "GEL Adsorption Processing for Waste Solidification in'NZP'Ceramics," MRS Online Proceedings Library Archive, vol. 26, 1983.
    37. 华正伸, 冯晓晶, 王晓然 and 彭会芬, "离子掺杂对 Nasicon 型化合物电化学性能的影响," 硅酸盐学报, vol. 45, no. 6, pp. 756-764, 2017.
    38. 陳清典, "MTi4P6O24 (M= Ba, Sr) 的合成, 燒結與其熱膨脹及介電性質," 成功大學資源工程學系學位論文, pp. 1-108, 2003.

    下載圖示 校內:2024-08-24公開
    校外:2024-08-24公開
    QR CODE