| 研究生: |
賴重佑 Lai, Chung-Yu |
|---|---|
| 論文名稱: |
合成模板共聚物poly(4-MAANI-MAA-EGDMA) 作為螢光材料進行對肌酸酐之鍵結探討 Synthesis of the Imprinted Poly(4-MAANI-MAA-EGDMA) as A Fluorescent Material for the Binding Investigation of Creatinine |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 螢光單體 、選擇性感測 、肌酸酐 、模版螢光高分子 |
| 外文關鍵詞: | selective detection, fluorescent monomer, Creatinine, imprinted fluorescent polymer |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肌酸酐 (creatinine) 為肌肉中肌酸 (creatine) 代謝而來的產物,為人體腎臟代謝循環的最終產物,同時也是診斷人體腎功能的重要指標。本實驗利用4-溴基-1,8奈基酸酐 (4-bromo-1,8-naphthalic anhydride) 經開環取代反應及芳香族官能基取代反應合成螢光功能性單體4-甲胺基-1,8丙烯基奈基醯亞胺 (4-methylamino-N-allylnaphthalimide) 作為功能性單體,與另一功能性單體甲基丙烯酸 (methacrylic acid),在交聯劑乙二醇二甲基丙烯酸酯 (ethylene glycol dimethacrylate) 作用下,進行高分子聚合反應製備肌酸酐螢光模版高分子。
肌酸酐模版高分子在單成份肌酸酐溶液吸附中,對肌酸酐之吸附量為1.821 ± 0.067 mg creatinine/g MIP,而無模版高分子對肌酸酐之吸附量為0.502 ± 0.026 mg creatinine/g NIP,兩者相除所得之模印因子為3.632 ± 0.332。在相似物的選擇性吸附中,雙成份系統裡對共存物肌酸 (creatine)以及相似物N-羥基丁二醯亞氨 (N-hydroxysuccinimide)、及咯烷酮 (2-pyrrolidinone) 的選擇率分別為4.776 ± 0.892、7.636 ± 1.273以及2.538 ± 0.393,可證明模版高分子具有良好的辨識能力。在血清的干擾性吸附中,模版高分子對肌酸酐之吸附量為1.481 ± 0.278 mg creatinine/g MIP,而無模版高分子對肌酸酐之吸附量為0.443 ± 0.013 mg creatinine/g NIP,模印因子為3.335 ± 0.533,可知模版高分子即使在干擾物較多的血清環境下仍可保有良好的辨識能力。
以螢光光度計檢測螢光模版高分子之相對螢光強度變化量對肌酸酐濃度變化實驗中,螢光模版高分子對螢光無模版高分子之模印因子為4.142 ± 0.288。而對共存物肌酸 (creatine) 以及相似物N-羥基丁二醯亞氨 (N-hydroxysuccinimide)、及咯烷酮 (2-pyrrolidinone) 的選擇率則為3.222 ± 0.081、5.800 ± 0.067以及2.231 ± 0.051,相較於前述之吸附實驗所得的選擇率稍差,可能是檢測方法不同之故,亦有可能是因為吸附條件不同的影響,故未來尚須尋求更佳的螢光檢測方法或條件來提升選擇率,以求更精準的螢光模版高分子感測效果與實用性。
Creatinine is decomposed from creatine in muscle and is one of the final products of kidney metabolism. It is used as an important index to evaluate the kidney function. 4-Bromo-1,8-naphthalic anhydride was used to synthesize 4-methylamino-N-allylnaphthalimide, which is a fluorescent functional monomer. It was co-polymerized with another functional monomer, methacrylic acid, in the presence of crosslinker, ethylene glycol dimethacrylate and creatinine template molecule, to obtain the imprinted fluorescent polymer.
The binding capacity of the imprinted fluorescent polymer toward creatinine in creatinine solution was 1.821 ± 0.067 mg creatinine/g MIP. A capacity of 0.502 ± 0.026 mg creatinine/g NIP can be obtained from the corresponding non-molecularly imprinted polymer (NIP). The ratio of the binding capacity for MIP to that for NIP is defined as imprinted factor. In this case, the imprinted factor was 3.632 ± 0.332. For selective absorption, the analogs used were creatine, N-hydroxysuccinimide and 2-pyrrolidinone. The resulted selectivity ratios were 4.776 ± 0.892, 7.636 ± 1.273 and 2.538 ± 0.393, respectively. In serum test, the binding capacity were 1.481 ± 0.278 mg creatinine/g MIP and 0.443 ± 0.013 mg creatinine/g NIP respectively. The imprinted factor from serum was 3.335 ± 0.533. Hence, serum did not seem to cause severe interference in this case.
As for the fluorescent detection, the correlation between the quenched amount of fluorescent intensity and the creatinine concentration was used to calculate the imprinted factor. The imprinted factor was 4.142 ± 0.288. Additionally, the selectivity ratios for creatine, N-hydroxysuccinimide and 2-pyrrolidinone were 3.222 ± 0.081, 5.800 ± 0.067 and 2.231 ± 0.051, respectively. As a result, the preliminary test on the selective detection of creatinine by using imprinted fluorescent polymers was successfully performed.
1. Updike S.J., Hicks G.P., The enzyme electrode, Nature, 1967, 214, 986- 988.
2. Hideaki N., Isao K., Current research activity in biosensors, Analytical and Bioanalytical Chemistry, 2003, 377, 446-468.
3. Kojima K., Witarto A.B., Sode K., The production of soluble pyrroloquinoline quinone glucose dehydrogenase by Klebsiella pneumoniae, the alternative host of PQQ enzymes, Biotechnology Letters, 2000, 22, 1343-1347
4. Sode K., Ootera T., Shirahane M.,Witarto A.B., Igarashi S., Yoshida H., Increasing the thermal stability of the water-soluble pyrroloquinoline quinone glucose dehydrogenase by single amino acid replacement, Enzyme and Microbial Technology, 2000, 26, 491-496
5. Hassibi A., Zahedi S., Navid R., Dutton R.W., Lee T.H., Biological shot-noise and quantum-limited signal-to-noise ratio in affinity-based biosensors, Journal of Applied Physics, 2005, 97, 084701-1-10
6. Souza D., Microbial biosensors, Biosensors and Bioelectronics, 2001, 16, 337-353
7. O’Connell P.J., Guilbault G.G., Future trends in biosensor research, Analytical Letters, 2001, 34, 1063-1078
8. Lisdat F., Karube I., Copper proteins immobilised on gold electrodes for (bio)analytical studies, Biosensors and Bioelectronics, 2002, 17, 1051-1057
9. Suzuki H., Shiroishi H., Sasaki S., Karube I., Microfabricated liquid junction Ag/AgCl reference electrode and its application to a one-chip potentiometric sensor, Analytical Chemistry, 1999, 71, 5069-5075
10. Mousty C., Bergamasco J.L., Wessel R., Perrot H., Cosnier S., Elaboration and characterization of spatially controlled assemblies of complementary polyphenol oxidase-alkaline phosphatase activities on electrodes, Analytical Chemistry, 2001, 73, 2890-2897
11. Myszka D.G., Survey of the 1998 optical biosensor literature, Journal of Molecular Recognition, 1999, 12, 390-408
12. Rich R.L., Myszka D.G., Survey of the 1999 surface plasmon resonance biosensor literature, Journal of Molecular Recognition, 2000, 13, 388-407
13. Nakanishi K., Hiroshi S., Uchida A., Ishida Y., Karube I., Detection of the red tide-causing plankton Chattonella marina using a piezoelectric immunosensor, Analytica Chimica Acta, 1996, 325, 73-80
14. Tombelli S., Mascini M., Braccini L., Anichini M., Turner A.P.F., Coupling of a DNA piezoelectric biosensor and polymerase chain reaction to detect apolipoprotein E polymorphisms, Biosensors and Bioelectronics, 15, 363-370
15. Ansell, Richard J., Molecularly imprinted polymers in pseudoimmunoassay, Journal of Chromatography B–Analytical Technologies in the Biomedical and Life Sciences, 2004, 804, 151-165
16. Cormack P.A.G., Elorza A.Z., Molecularly imprinted polymers: synthesis and characterisation, Journal of Chromatography B–Analytical Technologies in the Biomedical and Life Sciences, 2004, 804, 173-182
17. Sergey A., Anthony P.F., Subrahmanyam S., Application of molecularly imprinted polymers in sensors for the environment and biotechnology, Sensor Review, 2001, 21, 292-296
18. García-Calzóna J.A., Díaz-García M.E., Characterization of binding sites in molecularly imprinted polymers, Sensors and Actuators B–Chemical, 2007, 123, 1180-1194
19. Blanco-López M. C., Lobo-Castañón M. J., Miranda-Ordieres A. J., Tuñón-Blanco P., Electrochemical sensors based on molecularly imprinted polymers, TrAC–Trends in Analytical Chemistry, 2004, 23, 36-48
20. Karsten H., Klaus M., Molecularly imprinted polymers and their use in biomimetic sensors, Chemical Reviews, 2000, 100, 2495-2504
21. Mayes A.G., Whitcombe M.J. , Synthetic strategies for the generation of molecularly imprinted organic polymers, Advanced Drug Delivery Reviews, 2005, 57, 1742-1778
22. Kubo H., Nariai H., Takeuchi T., Multiple hydrogen bonding-based fluorescent imprinted polymers for cyclobarbital prepared with 2,6-bis(acrylamido)pyridine, Chemical Communication, 2003, 22, 2792-2793
23. Thanh N.T.K., Rathbone D.L., Billington D.D., Hartell, Selective recognition of cyclic GMP using a fluorescence-based molecularly imprinted polymer, Analytical Letters, 2002, 35, 2499-2509
24. Tong A.J., Dong H., Li L.D, Molecular imprinting-based fluorescent chemosensor for histamine using zinc(II)–protoporphyrin as a functional monomer, Analytical Chemica Acta, 2002, 466, 31-37
25. Takeucji T., Mikawa T., Matsui J., Higashi M.,Shimizu D., Molecularly imprinted polymers with metalloporphyrin-based molecular recognition sites coassembled with methacrylic acid, Analytical Chemistry, 2001, 73, 3869-3874
26. Graham A.L., Carlson C.A., Edmiston P.L., Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT, Analytical Chemistry, 2002, 74, 458-467
27. Sulitzky C., Ruckbert B., Hall A.J., Lanza F., Unger K., Sellergren B., Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators, Macromolecules, 2002, 35, 79-91
28. Byren M.E., Oral E., Hilt J.Z., Peppas N.A., Networks for recognition of biomolecules: molecular imprinting and micropatterning poly(ethylene glycol)- Containing films, Polymers for Advanced Technologies, 2002, 13, 798-816
29. Chow C.F., Lam M.H.W., Leung M.K.P., Fluorescent sensing of homocysteine by molecular imprinting, Analytica Chimica Acta, 2002, 466, 17-30
30. Taniwaki K., Hyakutake A,. Aoki T., Yoshikawa M., Guiver M.D., Robwertson G.P., Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy, Analytica Chimica Acta, 2003, 489, 191-198
31. Kugimiya S., Takeuchi T., Surface plasmon resonance sensor using molecularly imprinted polymer for detection of sialic acid, Biosensors and Bioelectronics, 2001, 16, 1059-1062
32. Lotierzo M., Henry O.Y.F., Piletshy S.A., Tothill I., Cullen D., Kania M., Hock B., Turner A.P.F., Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer, Biosensors and Bioelectronics, 2004, 20, 145-152
33. Henry O.Y.F., Cullen D., Piletsky S.A., Optical interrogation of molecularly imprinted polymers and development of MIP sensors: A review, Analytical and Bioanalytical Chemistry, 2005, 382, 947-956
34. Rendell D., Fluorescence and phosphorescence spectroscopy, 1987
35. Lakowicz, Joseph R., Principles of fluorescence spectroscopy, 1987
36. Sychra V., Rubeska I., Svoboda V., Atomic fluorescence spectroscopy, 1975
37. Hercules, David M., Fluorescence and phosphorescence analysis :principles and applications, 1966
38. Brand, Ludwig., Johnson, Michael L., Fluorescence spectroscopy , 1997
39. Lakowicz, Joseph R., Principles of fluorescence spectroscopy, 1999
40. Hof M., Hutterer R., Fidler V., Fluorescence spectroscopy in biology :advanced methods and their applications to membranes, proteins, DNA, and cells , 2005
41. Bernard V., Molecular fluorescence :principles and applications, 2002
42. Academic K., Reviews in fluorescence, 2004
43. Falco P.C., Genaro L.A.T., Lloret S.M., Gomez F.B., Cabeza A.S., Legua C.M., Creatinine determination in urine samples by batchwise kinetic procedure and flow injection analysis using the Jaffe reaction chemometric study, Talanta, 2001, 55, 1079-1089
44. Chen J.C., Kumar A.S., Chung H.H., Chien S.H., Kuo M.C., Zen J.M., An enzymeless electrochemical sensor for the selective determination of creatinine in human urine, Sensors and Actuator B–Chemical, 2006, 115, 473-480
45. Smith-Palmer T., Separation methods applicable to urinary creatine and creatinine, Journal of Chromatography B–Analytical Technologies in the Biomedical and Life Sciences, 2002, 781, 93-106
46. Elmosallamy M.A.F., New potentiometric sensors for creatinine, Analytic Chimica Acta, 2006, 564, 253-257
47. Erlenkotter A,. Fobker M., Chemnitius G.C., Biosensors and flow-through system for the determination of creatinine in hemodialysate, Analytical and Bioanalytical Chemistry, 2002, 372, 284-292
48. Konstantinova T.N., Meallier P., Grabchev I., The synthesis of some 1,8-naphthalic anhydride derivatives as dyes for polymeric materials, Dyes and Pigments, 1993, 22, 191-198
49. Grabchev I., Meallier P., Konstantinova T.N., Popova M., Synthesis of some unstturated 1,8-naphthalimide dyes, Dyes and Pigments, 1995, 28, 41-46
50. Grabchev I., Photophysical characteristics of polymerizable 1,8-naphthalimide dyes and their copolymer with styrene or methylmethacrylate, Dyes and Pigment, 1998, 38, 219-226