簡易檢索 / 詳目顯示

研究生: 賴重佑
Lai, Chung-Yu
論文名稱: 合成模板共聚物poly(4-MAANI-MAA-EGDMA) 作為螢光材料進行對肌酸酐之鍵結探討
Synthesis of the Imprinted Poly(4-MAANI-MAA-EGDMA) as A Fluorescent Material for the Binding Investigation of Creatinine
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 99
中文關鍵詞: 螢光單體選擇性感測肌酸酐模版螢光高分子
外文關鍵詞: selective detection, fluorescent monomer, Creatinine, imprinted fluorescent polymer
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌酸酐 (creatinine) 為肌肉中肌酸 (creatine) 代謝而來的產物,為人體腎臟代謝循環的最終產物,同時也是診斷人體腎功能的重要指標。本實驗利用4-溴基-1,8奈基酸酐 (4-bromo-1,8-naphthalic anhydride) 經開環取代反應及芳香族官能基取代反應合成螢光功能性單體4-甲胺基-1,8丙烯基奈基醯亞胺 (4-methylamino-N-allylnaphthalimide) 作為功能性單體,與另一功能性單體甲基丙烯酸 (methacrylic acid),在交聯劑乙二醇二甲基丙烯酸酯 (ethylene glycol dimethacrylate) 作用下,進行高分子聚合反應製備肌酸酐螢光模版高分子。
    肌酸酐模版高分子在單成份肌酸酐溶液吸附中,對肌酸酐之吸附量為1.821 ± 0.067 mg creatinine/g MIP,而無模版高分子對肌酸酐之吸附量為0.502 ± 0.026 mg creatinine/g NIP,兩者相除所得之模印因子為3.632 ± 0.332。在相似物的選擇性吸附中,雙成份系統裡對共存物肌酸 (creatine)以及相似物N-羥基丁二醯亞氨 (N-hydroxysuccinimide)、及咯烷酮 (2-pyrrolidinone) 的選擇率分別為4.776 ± 0.892、7.636 ± 1.273以及2.538 ± 0.393,可證明模版高分子具有良好的辨識能力。在血清的干擾性吸附中,模版高分子對肌酸酐之吸附量為1.481 ± 0.278 mg creatinine/g MIP,而無模版高分子對肌酸酐之吸附量為0.443 ± 0.013 mg creatinine/g NIP,模印因子為3.335 ± 0.533,可知模版高分子即使在干擾物較多的血清環境下仍可保有良好的辨識能力。
    以螢光光度計檢測螢光模版高分子之相對螢光強度變化量對肌酸酐濃度變化實驗中,螢光模版高分子對螢光無模版高分子之模印因子為4.142 ± 0.288。而對共存物肌酸 (creatine) 以及相似物N-羥基丁二醯亞氨 (N-hydroxysuccinimide)、及咯烷酮 (2-pyrrolidinone) 的選擇率則為3.222 ± 0.081、5.800 ± 0.067以及2.231 ± 0.051,相較於前述之吸附實驗所得的選擇率稍差,可能是檢測方法不同之故,亦有可能是因為吸附條件不同的影響,故未來尚須尋求更佳的螢光檢測方法或條件來提升選擇率,以求更精準的螢光模版高分子感測效果與實用性。

    Creatinine is decomposed from creatine in muscle and is one of the final products of kidney metabolism. It is used as an important index to evaluate the kidney function. 4-Bromo-1,8-naphthalic anhydride was used to synthesize 4-methylamino-N-allylnaphthalimide, which is a fluorescent functional monomer. It was co-polymerized with another functional monomer, methacrylic acid, in the presence of crosslinker, ethylene glycol dimethacrylate and creatinine template molecule, to obtain the imprinted fluorescent polymer.
    The binding capacity of the imprinted fluorescent polymer toward creatinine in creatinine solution was 1.821 ± 0.067 mg creatinine/g MIP. A capacity of 0.502 ± 0.026 mg creatinine/g NIP can be obtained from the corresponding non-molecularly imprinted polymer (NIP). The ratio of the binding capacity for MIP to that for NIP is defined as imprinted factor. In this case, the imprinted factor was 3.632 ± 0.332. For selective absorption, the analogs used were creatine, N-hydroxysuccinimide and 2-pyrrolidinone. The resulted selectivity ratios were 4.776 ± 0.892, 7.636 ± 1.273 and 2.538 ± 0.393, respectively. In serum test, the binding capacity were 1.481 ± 0.278 mg creatinine/g MIP and 0.443 ± 0.013 mg creatinine/g NIP respectively. The imprinted factor from serum was 3.335 ± 0.533. Hence, serum did not seem to cause severe interference in this case.
    As for the fluorescent detection, the correlation between the quenched amount of fluorescent intensity and the creatinine concentration was used to calculate the imprinted factor. The imprinted factor was 4.142 ± 0.288. Additionally, the selectivity ratios for creatine, N-hydroxysuccinimide and 2-pyrrolidinone were 3.222 ± 0.081, 5.800 ± 0.067 and 2.231 ± 0.051, respectively. As a result, the preliminary test on the selective detection of creatinine by using imprinted fluorescent polymers was successfully performed.

    第一章 緒論 1.1 生物感測器 (Biosensors)………………………………………………..1 1.1.1 生物感測器組成元件…………………………………………….1 1.1.2 基本生物感測器裝置…………………………………………….2 1.2 分子模版高分子 (Molecularly imprinted polymers)…………………...4 1.2.1分子模印方法……………………………………………………..6 1.2.2分子模版高分子之辨識機制……………………………………..6 1.2.3模版高分子的組成………………………………………………..7 1.2.4光學偵測在模版高分子的應用…………………………………..9 1.3螢光原理與其應用………………………………………………………10 1.3.1發展歷史………………………………………………………….11 1.3.2螢光發光原理…………………………………………………….11 1.3.3影響螢光性質的原因…………………………………………….14 1.4肌酸酐 (Creatinine)……………………………………………………..16 1.4.1肌酸酐量測方法………………………………………………….17 1.5 研究動機………………………………………………………………..18 第二章 實驗方法,材料與儀器……………………………………………19 2.1螢光單體合成……………………………………………………………19 2.1.1合成4-bromo-N-allylnaphthalimide……………………………...19 2.1.2合成4-methylamino-N-allylnaphthalimide……………………….19 2.2肌酸酐螢光模版高分子之製備…………………………………………19 2.3肌酸酐模版高分子的脫附………………………………………………20 2.4肌酸酐模版高分子對肌酸酐的吸附……………………………………20 2.5肌酸酐HPLC分析條件…………………………………………………21 2.6肌酸酐高分子模板的選擇性吸附………………………………………22 2.6.1 MIP對雙成份溶液之吸附測試………………………………….22 2.6.2 MIP對三成份溶液之吸附測試………………………………….22 2.7肌酸酐模版高分子在干擾物中的吸附測試……………………………22 2.8肌酸酐螢光模版高分子的螢光強度測量………………………………22 2.9肌酸酐模板高分子對相似物的螢光強度分析…………………………23 2.10實驗藥品……………………………………………………………….28 2.11實驗儀器……………………………………………………………….30 第三章 結果與討論………………………………………………………...31 3.1功能性螢光單體4-methylamino-N-allylnaphthalimides簡介………….31 3.1.1使用4-bromo-1,8-naphthalic anhydride為基材製備螢光單體....31 3.1.2利用methylamine取代基增強螢光單體發光率………………..36 3.2以合成之單體4-methylamino-N-allylnaphthalimide製備肌酸酐模版高分子…………………………………………………………………….43 3.2.1肌酸酐模版高分子辨識行為……………………………………43 3.2.2肌酸酐模版高分子與無模版高分子吸附肌酸酐之比較………45 3.3肌酸酐模版高分子於多成份下吸附的選擇性探討……………………48 3.3.1肌酸酐模版高分子在雙成份溶液中之選擇性吸附實驗……….49 3.3.2肌酸酐模版高分子在三成份溶液中之選擇性吸附實驗……….51 3.3.3肌酸酐模版高分子在血清中的干擾性吸附…………………….55 3.3.4肌酸酐模版高分子在不同溶液量下吸附結果………………….57 3.4 不同製備條件下肌酸酐模版高分子吸附表現之比較………………..59 3.4.1 附量與模印因子的比較………………………………………...59 3.4.2不同製備條件下模版高分子在混合溶液中的選擇率……........61 3.5利用螢光檢測分析肌酸酐螢光模版高分子之吸附行為………………67 3.5.1螢光檢測螢光模版高分子之模印因子………………………….67 3.5.2利用螢光檢測計算肌酸酐與相似物間選擇率………………….70 3.5.3螢光模版高分子螢光性質之檢測……………………………….74 第四章 結論………………………………………………………………...81 參考文獻…………………………………………………………………….84

    1. Updike S.J., Hicks G.P., The enzyme electrode, Nature, 1967, 214, 986- 988.
    2. Hideaki N., Isao K., Current research activity in biosensors, Analytical and Bioanalytical Chemistry, 2003, 377, 446-468.
    3. Kojima K., Witarto A.B., Sode K., The production of soluble pyrroloquinoline quinone glucose dehydrogenase by Klebsiella pneumoniae, the alternative host of PQQ enzymes, Biotechnology Letters, 2000, 22, 1343-1347
    4. Sode K., Ootera T., Shirahane M.,Witarto A.B., Igarashi S., Yoshida H., Increasing the thermal stability of the water-soluble pyrroloquinoline quinone glucose dehydrogenase by single amino acid replacement, Enzyme and Microbial Technology, 2000, 26, 491-496
    5. Hassibi A., Zahedi S., Navid R., Dutton R.W., Lee T.H., Biological shot-noise and quantum-limited signal-to-noise ratio in affinity-based biosensors, Journal of Applied Physics, 2005, 97, 084701-1-10
    6. Souza D., Microbial biosensors, Biosensors and Bioelectronics, 2001, 16, 337-353
    7. O’Connell P.J., Guilbault G.G., Future trends in biosensor research, Analytical Letters, 2001, 34, 1063-1078
    8. Lisdat F., Karube I., Copper proteins immobilised on gold electrodes for (bio)analytical studies, Biosensors and Bioelectronics, 2002, 17, 1051-1057
    9. Suzuki H., Shiroishi H., Sasaki S., Karube I., Microfabricated liquid junction Ag/AgCl reference electrode and its application to a one-chip potentiometric sensor, Analytical Chemistry, 1999, 71, 5069-5075
    10. Mousty C., Bergamasco J.L., Wessel R., Perrot H., Cosnier S., Elaboration and characterization of spatially controlled assemblies of complementary polyphenol oxidase-alkaline phosphatase activities on electrodes, Analytical Chemistry, 2001, 73, 2890-2897
    11. Myszka D.G., Survey of the 1998 optical biosensor literature, Journal of Molecular Recognition, 1999, 12, 390-408
    12. Rich R.L., Myszka D.G., Survey of the 1999 surface plasmon resonance biosensor literature, Journal of Molecular Recognition, 2000, 13, 388-407
    13. Nakanishi K., Hiroshi S., Uchida A., Ishida Y., Karube I., Detection of the red tide-causing plankton Chattonella marina using a piezoelectric immunosensor, Analytica Chimica Acta, 1996, 325, 73-80
    14. Tombelli S., Mascini M., Braccini L., Anichini M., Turner A.P.F., Coupling of a DNA piezoelectric biosensor and polymerase chain reaction to detect apolipoprotein E polymorphisms, Biosensors and Bioelectronics, 15, 363-370
    15. Ansell, Richard J., Molecularly imprinted polymers in pseudoimmunoassay, Journal of Chromatography B–Analytical Technologies in the Biomedical and Life Sciences, 2004, 804, 151-165
    16. Cormack P.A.G., Elorza A.Z., Molecularly imprinted polymers: synthesis and characterisation, Journal of Chromatography B–Analytical Technologies in the Biomedical and Life Sciences, 2004, 804, 173-182
    17. Sergey A., Anthony P.F., Subrahmanyam S., Application of molecularly imprinted polymers in sensors for the environment and biotechnology, Sensor Review, 2001, 21, 292-296
    18. García-Calzóna J.A., Díaz-García M.E., Characterization of binding sites in molecularly imprinted polymers, Sensors and Actuators B–Chemical, 2007, 123, 1180-1194
    19. Blanco-López M. C., Lobo-Castañón M. J., Miranda-Ordieres A. J., Tuñón-Blanco P., Electrochemical sensors based on molecularly imprinted polymers, TrAC–Trends in Analytical Chemistry, 2004, 23, 36-48
    20. Karsten H., Klaus M., Molecularly imprinted polymers and their use in biomimetic sensors, Chemical Reviews, 2000, 100, 2495-2504
    21. Mayes A.G., Whitcombe M.J. , Synthetic strategies for the generation of molecularly imprinted organic polymers, Advanced Drug Delivery Reviews, 2005, 57, 1742-1778
    22. Kubo H., Nariai H., Takeuchi T., Multiple hydrogen bonding-based fluorescent imprinted polymers for cyclobarbital prepared with 2,6-bis(acrylamido)pyridine, Chemical Communication, 2003, 22, 2792-2793
    23. Thanh N.T.K., Rathbone D.L., Billington D.D., Hartell, Selective recognition of cyclic GMP using a fluorescence-based molecularly imprinted polymer, Analytical Letters, 2002, 35, 2499-2509
    24. Tong A.J., Dong H., Li L.D, Molecular imprinting-based fluorescent chemosensor for histamine using zinc(II)–protoporphyrin as a functional monomer, Analytical Chemica Acta, 2002, 466, 31-37
    25. Takeucji T., Mikawa T., Matsui J., Higashi M.,Shimizu D., Molecularly imprinted polymers with metalloporphyrin-based molecular recognition sites coassembled with methacrylic acid, Analytical Chemistry, 2001, 73, 3869-3874
    26. Graham A.L., Carlson C.A., Edmiston P.L., Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT, Analytical Chemistry, 2002, 74, 458-467
    27. Sulitzky C., Ruckbert B., Hall A.J., Lanza F., Unger K., Sellergren B., Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators, Macromolecules, 2002, 35, 79-91
    28. Byren M.E., Oral E., Hilt J.Z., Peppas N.A., Networks for recognition of biomolecules: molecular imprinting and micropatterning poly(ethylene glycol)- Containing films, Polymers for Advanced Technologies, 2002, 13, 798-816
    29. Chow C.F., Lam M.H.W., Leung M.K.P., Fluorescent sensing of homocysteine by molecular imprinting, Analytica Chimica Acta, 2002, 466, 17-30
    30. Taniwaki K., Hyakutake A,. Aoki T., Yoshikawa M., Guiver M.D., Robwertson G.P., Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy, Analytica Chimica Acta, 2003, 489, 191-198
    31. Kugimiya S., Takeuchi T., Surface plasmon resonance sensor using molecularly imprinted polymer for detection of sialic acid, Biosensors and Bioelectronics, 2001, 16, 1059-1062
    32. Lotierzo M., Henry O.Y.F., Piletshy S.A., Tothill I., Cullen D., Kania M., Hock B., Turner A.P.F., Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer, Biosensors and Bioelectronics, 2004, 20, 145-152
    33. Henry O.Y.F., Cullen D., Piletsky S.A., Optical interrogation of molecularly imprinted polymers and development of MIP sensors: A review, Analytical and Bioanalytical Chemistry, 2005, 382, 947-956
    34. Rendell D., Fluorescence and phosphorescence spectroscopy, 1987
    35. Lakowicz, Joseph R., Principles of fluorescence spectroscopy, 1987
    36. Sychra V., Rubeska I., Svoboda V., Atomic fluorescence spectroscopy, 1975
    37. Hercules, David M., Fluorescence and phosphorescence analysis :principles and applications, 1966
    38. Brand, Ludwig., Johnson, Michael L., Fluorescence spectroscopy , 1997
    39. Lakowicz, Joseph R., Principles of fluorescence spectroscopy, 1999
    40. Hof M., Hutterer R., Fidler V., Fluorescence spectroscopy in biology :advanced methods and their applications to membranes, proteins, DNA, and cells , 2005
    41. Bernard V., Molecular fluorescence :principles and applications, 2002
    42. Academic K., Reviews in fluorescence, 2004
    43. Falco P.C., Genaro L.A.T., Lloret S.M., Gomez F.B., Cabeza A.S., Legua C.M., Creatinine determination in urine samples by batchwise kinetic procedure and flow injection analysis using the Jaffe reaction chemometric study, Talanta, 2001, 55, 1079-1089
    44. Chen J.C., Kumar A.S., Chung H.H., Chien S.H., Kuo M.C., Zen J.M., An enzymeless electrochemical sensor for the selective determination of creatinine in human urine, Sensors and Actuator B–Chemical, 2006, 115, 473-480
    45. Smith-Palmer T., Separation methods applicable to urinary creatine and creatinine, Journal of Chromatography B–Analytical Technologies in the Biomedical and Life Sciences, 2002, 781, 93-106
    46. Elmosallamy M.A.F., New potentiometric sensors for creatinine, Analytic Chimica Acta, 2006, 564, 253-257
    47. Erlenkotter A,. Fobker M., Chemnitius G.C., Biosensors and flow-through system for the determination of creatinine in hemodialysate, Analytical and Bioanalytical Chemistry, 2002, 372, 284-292
    48. Konstantinova T.N., Meallier P., Grabchev I., The synthesis of some 1,8-naphthalic anhydride derivatives as dyes for polymeric materials, Dyes and Pigments, 1993, 22, 191-198
    49. Grabchev I., Meallier P., Konstantinova T.N., Popova M., Synthesis of some unstturated 1,8-naphthalimide dyes, Dyes and Pigments, 1995, 28, 41-46
    50. Grabchev I., Photophysical characteristics of polymerizable 1,8-naphthalimide dyes and their copolymer with styrene or methylmethacrylate, Dyes and Pigment, 1998, 38, 219-226

    下載圖示 校內:2012-08-01公開
    校外:2012-08-01公開
    QR CODE