| 研究生: |
阮琇瑩 Ruan, Siou-Ying |
|---|---|
| 論文名稱: |
探討磷酸水解酶PP2A 的B56γ3調節次單元調控AKT/mTOR/p70S6K訊息軸線及調控大腸癌細胞對化療藥物的抗性的角色 Investigating the role of the B56γ3 regulatory subunit of PP2A in regulating the AKT/mTOR/p70S6K signaling axis and in regulating chemotherapy resistance of colon cancer cells |
| 指導教授: |
蔣輯武
Chiang, Chi-Wu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 蛋白磷酸水解酶2A型 、B56γ3調節次單元 、AKT/mTOR/p70S6K訊息路徑 、化療藥物抗性 、大腸癌 |
| 外文關鍵詞: | Protein phosphatase 2A, PP2A, AKT/mTOR/p70S6K, chemotherapy resistance, colon cancer |
| 相關次數: | 點閱:148 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白磷酸水解酶2A型 (簡稱PP2A) 是主要的絲氨酸/蘇氨酸磷酸酶之一,且在哺乳動物細胞中廣泛表達。PP2A完全酶由三個次單元所組成,包括構成結構骨架的A次單元、負責催化功能的C次單元以及種類多變並負責受質選擇的B次單元。根據先前研究,B56γ3調節次單元在PP2A的腫瘤抑制功能中扮演著重要角色。另一方面,由AKT、mTOR和p70S6K組成的訊息軸線是負責整合營養物質和生長因子對細胞的刺激反應的訊息傳遞,以驅動細胞生長,但經常在癌症中經常失去控制。我們的實驗室先前的研究發現在多種細胞中,在恆定狀況下過度表現B56γ3會提高AKT磷酸化程度。相反的,p70S6K的活化反而被B56γ3下調。在此研究中,在生長因子的刺激下,我們發現 B56γ3過度表現增強了AKT在Thr308與Ser473位點磷酸化的,這兩個磷酸化位點是AKT完全活化的標誌,相反的,將B56γ3穩定調低表現時,則降低了AKT在Thr308與Ser473位點磷酸化的程度。我們發現在胰島素刺激的NIH 3T3細胞中的AKT 磷酸化程度,顯著的受B56γ3過度表現而提高,但在表皮生長因子刺激的HCT116細胞中的結果並不明顯。相反的,相較於對照組細胞,在穩定降低表達B56γ3的HCT116細胞,以表皮生長因子刺激AKT磷酸化的程度則顯著的降低。同樣的,相較於對照組細胞,在穩定降低表達B56γ3的HeLa細胞及SW480細胞,以胰島素、表皮生長因子或胰島素類生長因子-1刺激AKT磷酸化的程度有顯著的降低。另一方面,相較於對照組細胞,B56γ3過度表達下的HCT116細胞,僅稍微降低表皮生長因子刺激的p70S6K Thr389磷酸化的程度。而在穩定調低表達的B56γ3的HeLa細胞中,在胰島素或表皮生長因子刺激下,但有顯示出一種上調了p70S6K Thr389位點的磷酸化的趨勢。另外,NIH3T3細胞中,B56γ3過度表達,在胰島素刺激或是胺基酸補充時,都顯著降低了磷酸化p70S6K的程度,而在SW480細胞中穩定降低表達B56γ3時,顯著增加了磷酸化 p70S6K的程度。此外,我們探討了 p70S6K所介導的生長因子訊息傳導負回饋調節在B56γ3上調 AKT 磷酸化中的角色,而我們的數據顯示,B56γ3過度表達導致的AKT 磷酸化程度增加,會因持續活化態的 p70S6K-E389D3E突變型的共表達而降低,但不活化態的p70S6K-K100R突變型則沒造成調降影響。另一方面,我們的數據顯示,透過使用p70S6K抑製劑 LY-2584702處理細胞,可以讓因穩定調低表現B56γ3導致的AKT磷酸化降低的程度回升。這些結果顯示B56γ3上調 AKT 磷酸化的現象,是可能藉由調控p70S6K所主導對生長因子訊息傳導的負回饋調節機制而造成。接著我們研究B56γ3促成的AKT激活是否可以促進化療藥處理後的癌細胞的存活,我們使用5-氟尿嘧啶 (5-FU) 處理大腸直腸癌細胞來探討B56γ3的影響。我們發現B56γ3過度表達促進了大腸直腸癌細胞的存活並提高了這樣的細胞對5-FU反應的半抑制濃度(IC50),而這樣的存活提高現象在AKT 抑製劑MK-2206共同處理細胞時被抵消。如預期的,MK-2206處理減弱B56γ3過度表達所引起的AKT活化。相反的,B56γ3穩定調低表現讓大腸直腸癌細胞在5-氟尿嘧啶(5-FU)處理下,表現出增加5-氟尿嘧啶(5-FU)的藥物敏感性及降低對5-FU反應半抑制濃度(IC50)。綜合所得到的結果,我們認為具有B56γ3調節次單元的PP2A可將生長因子刺激而活化的p70S6K的活性調降,隨後藉減弱 p70S6K所主導對生長因子訊息傳導的負回饋調節機制而導致AKT 活化,從而促進接受化療藥物處理的大腸直腸癌細胞的存活。
Protein phosphatase 2A (PP2A) is one of the major serine/threonine phosphatases and widely expressed in mammalian cells. A PP2A holoenzyme consists of three subunits including a scaffolding A subunit, a catalytic C subunit, and a variable regulatory B subunit. The B56γ3 regulatory subunit of PP2A has been reported to play an important role in the tumor suppressor function of PP2A. On the other hand, the signaling axis composed of AKT, mammalian target of rapamycin (mTOR), and 70 kDa ribosomal S6 kinase (p70S6K) integrates stimuli of nutrient and growth factors to drive cell and organismal growth and is often deregulated in cancer. Our lab previously showed that B56γ3 plays a positive role in regulating AKT phosphorylation in several cell lines at steady state. In contrast with AKT, p70S6K activation was showed to be down-regulated by B56γ3. Here, we found that B56γ3 overexpression enhanced levels of phospho-AKT at both Thr308 and Ser473, hallmarks of a full AKT activation, whereas B56γ3 overexpression increased levels of phospho-AKT in insulin-stimulated NIH3T3 cells, but modestly in EGF-stimulated HCT116 B56γ3 overexpression cells. Knockdown of B56γ3 expression significantly decreased levels of phospho-AKT in EGF-stimulated HCT116 cells, insulin or EGF-stimulated HeLa cells, and IGF-1-stimulated SW480 cells. B56γ3 overexpression only modestly reduced the level of phospho-p70S6K at Thr389 in EGF-stimulated HCT116 cells, whereas knockdown of B56γ3 showed a trend, in up-regulating the level of phospho-p70S6K at Thr389 in insulin or EGF-stimulated HeLa cells. However, B56γ3 overexpression significantly reduced levels of phospho-p70S6K in insulin or amino acid-stimulated NIH3T3 cells, and knockdown of B56γ3 significantly increased levels of phospho-p70S6K in IGF-stimulated SW480 cells. Furthermore, we addressed the role of p70S6K-mediated negative feedback regulation in B56γ3 up-regulating AKT phosphorylation, and our data showed that increased levels of phospho-AKT by B56γ3 overexpression were decreased by co-expression of constitutively activated p70S6K-E389D3E mutant, but not by kinase-dead p70S6K-K100R mutant. On the other hand, decreases in levels of phospho-AKT in cells with B56γ3 knockdown were restored by treating cells with p70S6K inhibitor LY-2584702. To investigate whether B56γ3-mediated AKT activation can promote cancer cell survival upon chemotherapy, we treated colorectal cancer (CRC) cell lines with or without B56γ3 overexpression with 5-Fluorouracil (5-FU). We found that B56γ3 overexpression promoted survival of CRC cells and increased IC50 of the 5-FU treatment, which was abolished when cells were co-treated with AKT inhibitor MK-2206. As expected, MK-2206 treatment attenuated increases in levels of AKT phosphorylation by B56γ3 overexpression. On the other hand, CRC cells with B56γ3 knockdown showed increased sensitivity and decreased IC50 under 5-FU treatment. In sum, the B56γ3 regulatory subunit of PP2A down-regulates p70S6K activation in response to growth factor stimulation and subsequently causes up-regulation of AKT activation through attenuating p70S6K-mediated negative feedback regulation on growth factor-stimulated signaling, regulating in increased survival of CRC cells treated by chemotherapeutic drugs.
1. Janssens, V. and J. Goris, Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J, 2001. 353(Pt 3): p. 417-39.
2. Perez, E. and J.B. Stock, Protein Carboxyl Esterification, in Encyclopedia of Biological Chemistry (Second Edition), W.J. Lennarz and M.D. Lane, Editors. 2013, Academic Press: Waltham. p. 607-610.
3. Dagda, R.K., et al., A developmentally regulated, neuron-specific splice variant of the variable subunit Bbeta targets protein phosphatase 2A to mitochondria and modulates apoptosis. J Biol Chem, 2003. 278(27): p. 24976-85.
4. McCright, B., et al., The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem, 1996. 271(36): p. 22081-9.
5. Strack, S., et al., Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol, 1998. 392(4): p. 515-27.
6. Tehrani, M.A., M.C. Mumby, and C. Kamibayashi, Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. J Biol Chem, 1996. 271(9): p. 5164-70.
7. Kuo, Y.C., et al., Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J Biol Chem, 2008. 283(4): p. 1882-92.
8. Eichhorn, P.J., M.P. Creyghton, and R. Bernards, Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta, 2009. 1795(1): p. 1-15.
9. Arnold, H.K. and R.C. Sears, Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Mol Cell Biol, 2006. 26(7): p. 2832-44.
10. Li, H.H., et al., A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO J, 2007. 26(2): p. 402-11.
11. Shouse, G.P., X. Cai, and X. Liu, Serine 15 phosphorylation of p53 directs its interaction with B56gamma and the tumor suppressor activity of B56gamma-specific protein phosphatase 2A. Mol Cell Biol, 2008. 28(1): p. 448-56.
12. Lai, T.Y., et al., The B56γ3 regulatory subunit-containing protein phosphatase 2A outcompetes Akt to regulate p27KIP1 subcellular localization by selectively dephosphorylating phospho-Thr157 of p27KIP1. Oncotarget, 2016. 7(4): p. 4542-58.
13. Zheng, H., et al., Expression and distribution of PPP2R5C gene in leukemia. Journal of hematology & oncology, 2011. 4: p. 21-21.
14. McCright, B. and D.M. Virshup, Identification of a New Family of Protein Phosphatase 2A Regulatory Subunits (∗). J. Biol. Chem., 1995. 270(44): p. 26123-26128.
15. Arroyo, J.D. and W.C. Hahn, Involvement of PP2A in viral and cellular transformation. Oncogene, 2005. 24(52): p. 7746-55.
16. Nobumori, Y., et al., B56γ tumor-associated mutations provide new mechanisms for B56γ-PP2A tumor suppressor activity. Mol Cancer Res, 2013. 11(9): p. 995-1003.
17. Tepeli, E., et al., Detection of deletions and/or amplifications of genes related with lung cancer by multiplex ligation-dependent probe amplification (MLPA) technique. Cancer Biol. Ther., 2009. 8(22): p. 2160-2164.
18. Ito, A., et al., A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J, 2000. 19(4): p. 562-71.
19. Chen, W., et al., Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell, 2004. 5(2): p. 127-136.
20. Deichmann, M., et al., The protein phosphatase 2A subunit Bgamma gene is identified to be differentially expressed in malignant melanomas by subtractive suppression hybridization. Melanoma Res, 2001. 11(6): p. 577-85.
21. Lee, T.-Y., et al., The B56gamma3 regulatory subunit of protein phosphatase 2A (PP2A) regulates S phase-specific nuclear accumulation of PP2A and the G1 to S transition. J. Biol. Chem., 2010. 285(28): p. 21567-21580.
22. Xie, Y., et al., PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep, 2019. 19(2): p. 783-791.
23. Altomare, D.A. and A.R. Khaled, Homeostasis and the importance for a balance between AKT/mTOR activity and intracellular signaling. Curr. Med. Chem., 2012. 19(22): p. 3748-3762.
24. Saxton, R.A. and D.M. Sabatini, mTOR Signaling in Growth, Metabolism, and Disease. Cell, 2017. 168(6): p. 960-976.
25. Hemmings, B.A. and D.F. Restuccia, PI3K-PKB/Akt pathway. Cold Spring Harb. Perspect. Biol., 2012. 4(9): p. a011189-a011189.
26. Hoxhaj, G. and B.D. Manning, The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer, 2020. 20(2): p. 74-88.
27. Sarbassov, D.D., et al., Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex. Science, 2005. 307(5712): p. 1098.
28. Hinz, N. and M. Jücker, Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun. Signal., 2019. 17(1): p. 154.
29. Jiang, N., et al., Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol. Biol. Rep., 2020. 47(6): p. 4587-4629.
30. Vara, J.Á.F., et al., PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev., 2004. 30(2): p. 193-204.
31. Liu, P., et al., PtdIns(3,4,5)<em>P</em><sub>3</sub>-Dependent Activation of the mTORC2 Kinase Complex. Cancer Discov, 2015. 5(11): p. 1194.
32. Yang, G., et al., A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation. Cell Rep., 2015. 12(6): p. 937-943.
33. Navé, B.T., et al., Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J., 1999. 344 Pt 2(Pt 2): p. 427-431.
34. Sekulić, A., et al., A Direct Linkage between the Phosphoinositide 3-Kinase-AKT Signaling Pathway and the Mammalian Target of Rapamycin in Mitogen-stimulated and Transformed Cells. Cancer Res., 2000. 60(13): p. 3504.
35. Franke, T.F., et al., PI3K/Akt and apoptosis: size matters. Oncogene, 2003. 22(56): p. 8983-8998.
36. Vidotto, T., et al., Emerging role of PTEN loss in evasion of the immune response to tumours. Br. J. Cancer, 2020. 122(12): p. 1732-1743.
37. Chalhoub, N. and S.J. Baker, PTEN and the PI3-kinase pathway in cancer. Annu. Rev. Pathol., 2009. 4: p. 127-150.
38. Shin, I., et al., PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nat. Med., 2002. 8(10): p. 1145-1152.
39. Liang, J., et al., PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med, 2002. 8(10): p. 1153-60.
40. Sekimoto, T., M. Fukumoto, and Y. Yoneda, 14-3-3 suppresses the nuclear localization of threonine 157-phosphorylated p27(Kip1). EMBO J, 2004. 23(9): p. 1934-42.
41. Medema, R.H., et al., AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature, 2000. 404(6779): p. 782-7.
42. Chang, F., et al., Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003. 17(3): p. 590-603.
43. Li, Y., D. Dowbenko, and L.A. Lasky, AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem, 2002. 277(13): p. 11352-61.
44. Zhou, B.P., et al., Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat. Cell Biol., 2001. 3(3): p. 245-252.
45. Datta, S.R., et al., 14-3-3 Proteins and Survival Kinases Cooperate to Inactivate BAD by BH3 Domain Phosphorylation. Mol. Cell, 2000. 6(1): p. 41-51.
46. Zha, J., et al., Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell, 1996. 87(4): p. 619-28.
47. Dobson, M., et al., Bimodal regulation of FoxO3 by AKT and 14-3-3. Biochim. Biophys. Acta, 2011. 1813(8): p. 1453-1464.
48. Brunet, A., et al., Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. Cell, 1999. 96(6): p. 857-868.
49. Datta, S.R., et al., Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 1997. 91(2): p. 231-41.
50. Willis, S.N., et al., Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science, 2007. 315(5813): p. 856-9.
51. Bukowski, K., M. Kciuk, and R. Kontek, Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci, 2020. 21(9): p. 3233.
52. Tanaka, K., et al., Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. Cancer Discov, 2011. 1(6): p. 524-38.
53. Guo, Y., et al., Sinapine reverses multi-drug resistance in MCF-7/dox cancer cells by downregulating FGFR4/FRS2α-ERK1/2 pathway-mediated NF-κB activation. Phytomedicine, 2016. 23(3): p. 267-273.
54. Yuan, Z., et al., Targeting CD133 reverses drug-resistance via the AKT/NF-κB/MDR1 pathway in colorectal cancer. Br. J. Cancer, 2020. 122(9): p. 1342-1353.
55. Roundhill, E.A. and S.A. Burchill, Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria. Br. J. Cancer, 2012. 106(6): p. 1224-1233.
56. Wang, L., N. Lin, and Y. Li, The PI3K/AKT signaling pathway regulates ABCG2 expression and confers resistance to chemotherapy in human multiple myeloma. Oncol Rep, 2019. 41(3): p. 1678-1690.
57. Liu, R., et al., PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis., 2020. 11(9): p. 797.
58. Yang, Q. and K.-L. Guan, Expanding mTOR signaling. Cell Res., 2007. 17(8): p. 666-681.
59. Shimobayashi, M. and M.N. Hall, Multiple amino acid sensing inputs to mTORC1. Cell Res., 2016. 26(1): p. 7-20.
60. Takahara, T., et al., Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J. Biomed. Sci., 2020. 27(1): p. 87-87.
61. Mossmann, D., S. Park, and M.N. Hall, mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer, 2018. 18(12): p. 744-757.
62. Takahara, T., et al., Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J. Biomed. Sci., 2020. 27(1): p. 87.
63. Sunami, T., et al., Structural basis of human p70 ribosomal S6 kinase-1 regulation by activation loop phosphorylation. J. Biol. Chem., 2010. 285(7): p. 4587-4594.
64. Jacinto, E., 7 - AGC Kinases in mTOR Signaling, in The Enzymes. 2010, Academic Press. p. 101-128.
65. Fenton, T.R. and I.T. Gout, Functions and regulation of the 70kDa ribosomal S6 kinases. Int J Biochem Cell Biol, 2011. 43(1): p. 47-59.
66. Meyuhas, O. and A. Dreazen, Ribosomal protein S6 kinase from TOP mRNAs to cell size. Prog Mol Biol Transl Sci, 2009. 90: p. 109-53.
67. Laychock, S.G., Insulin Receptor Signaling, in Encyclopedia of Hormones, H.L. Henry and A.W. Norman, Editors. 2003, Academic Press: New York. p. 368-380.
68. Boura-Halfon, S. and Y. Zick, Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am. J. Physiol. - Endocrinol. Metab., 2009. 296(4): p. E581-E591.
69. Copps, K.D., et al., Irs1 Serine 307 Promotes Insulin Sensitivity in Mice. Cell Metab., 2010. 11(1): p. 84-92.
70. Um, S.H., D. D'Alessio, and G. Thomas, Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab., 2006. 3(6): p. 393-402.
71. Shah, O.J. and T. Hunter, Turnover of the Active Fraction of IRS1 Involves Raptor-mTOR- and S6K1-Dependent Serine Phosphorylation in Cell Culture Models of Tuberous Sclerosis. Mol. Cell. Biol., 2006. 26(17): p. 6425.
72. Shah, O.J., Z. Wang, and T. Hunter, Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol, 2004. 14(18): p. 1650-6.
73. Zick, Y., Uncoupling insulin signalling by serine/threonine phosphorylation: a molecular basis for insulin resistance. Biochem. Soc. Trans., 2004. 32(5): p. 812-816.
74. Radimerski, T., et al., Lethality of Drosophila lacking TSC tumor suppressor function rescued by reducing dS6K signaling. Genes Dev, 2002. 16(20): p. 2627-32.
75. Julien, L.-A., et al., mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol. Cell. Biol., 2010. 30(4): p. 908-921.
76. Dibble, C.C., J.M. Asara, and B.D. Manning, Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol. Cell. Biol., 2009. 29(21): p. 5657-5670.
77. Kim, D., et al., Regulation and localization of ribosomal protein S6 kinase 1 isoforms. Growth Factors, 2009. 27(1): p. 12-21.
78. Magnuson, B., B. Ekim, and D.C. Fingar, Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J, 2012. 441(1): p. 1-21.
79. Rosner, M. and M. Hengstschläger, Nucleocytoplasmic localization of p70 S6K1, but not of its isoforms p85 and p31, is regulated by TSC2/mTOR. Oncogene, 2011. 30(44): p. 4509-4522.
80. Yang, J., et al., Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol. Cancer, 2019. 18(1): p. 26.
81. Ip, C.K. and A.S. Wong, Exploiting p70 S6 kinase as a target for ovarian cancer. Expert Opin. Ther. Targets, 2012. 16(6): p. 619-30.
82. Jastrzebski, K., et al., Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors, 2007. 25(4): p. 209-26.
83. Khotskaya, Y.B., et al., S6K1 promotes invasiveness of breast cancer cells in a model of metastasis of triple-negative breast cancer. Am. J, 2014. 6(4): p. 361-376.
84. Amaral, C.L., et al., S6Ks isoforms contribute to viability, migration, docetaxel resistance and tumor formation of prostate cancer cells. BMC Cancer, 2016. 16(1): p. 602.
85. Ruvolo, P.P., et al., Low expression of PP2A regulatory subunit B55α is associated with T308 phosphorylation of AKT and shorter complete remission duration in acute myeloid leukemia patients. Leukemia, 2011. 25(11): p. 1711-1717.
86. Gao, T., F. Furnari, and A.C. Newton, PHLPP: A Phosphatase that Directly Dephosphorylates Akt, Promotes Apoptosis, and Suppresses Tumor Growth. Mol. Cell, 2005. 18(1): p. 13-24.
87. Liu, J., et al., PHLPP-mediated dephosphorylation of S6K1 inhibits protein translation and cell growth. Mol Cell Biol, 2011. 31(24): p. 4917-27.
88. Hahn, K., et al., PP2A Regulatory Subunit PP2A-B′ Counteracts S6K Phosphorylation. Cell Metab., 2010. 11(5): p. 438-444.
89. Fan, Y.L., et al., Over expression of PPP2R2C inhibits human glioma cells growth through the suppression of mTOR pathway. FEBS Lett, 2013. 587(24): p. 3892-7.
90. Tan, H.W.S., A.Y.L. Sim, and Y.C. Long, Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat. Commun., 2017. 8(1): p. 338.
91. 陳詩旻, 探討磷酸水解酶PP2A的B56γ3調節次單元調控AKT/p70S6K致癌訊息路徑, in 分子醫學研究所. 2020, 國立成功大學: 台南市. p. 83.
92. 蕭凱擎, 探討磷酸水解酶PP2A的B56γ3調節次單元在促進大腸直腸癌細胞上皮-間質細胞轉換的角色及分子機制, in 分子醫學研究所. 2018, 國立成功大學: 台南市. p. 104.
93. Samuels, Y., et al., Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell, 2005. 7(6): p. 561-573.
94. Ligresti, G., et al., PIK3CA mutations in human solid tumors: role in sensitivity to various therapeutic approaches. Cell cycle, 2009. 8(9): p. 1352-1358.
95. Yoneyama, Y., et al., Serine Phosphorylation by mTORC1 Promotes IRS-1 Degradation through SCFβ-TRCP E3 Ubiquitin Ligase. iScience, 2018. 5: p. 1-18.
96. Ozes, O.N., et al., A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc Natl Acad Sci U S A, 2001. 98(8): p. 4640-5.
97. Gassaway, B.M., et al., PKCε contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proc Natl Acad Sci U S A, 2018. 115(38): p. E8996-e9005.
98. Choi, E., et al., Mitotic regulators and the SHP2-MAPK pathway promote IR endocytosis and feedback regulation of insulin signaling. Nat. Commun., 2019. 10(1): p. 1473.
99. Gao, Z., et al., Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem, 2002. 277(50): p. 48115-21.
100. Yang, X., et al., The double-stranded RNA-dependent protein kinase differentially regulates insulin receptor substrates 1 and 2 in HepG2 cells. Mol. Biol. Cell, 2010. 21(19): p. 3449-3458.
101. Rui, L., et al., Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest, 2001. 107(2): p. 181-9.
102. Li, Y., et al., Protein Kinase C θ Inhibits Insulin Signaling by Phosphorylating IRS1 at Ser1101*. J. Biol. Chem., 2004. 279(44): p. 45304-45307.
103. Horike, N., et al., Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem, 2003. 278(20): p. 18440-7.
104. Rajan, M.R., et al., Phosphorylation of IRS1 at serine 307 in response to insulin in human adipocytes is not likely to be catalyzed by p70 ribosomal S6 kinase. PLoS One, 2013. 8(4): p. e59725.
105. Hiratani, K., et al., Roles of mTOR and JNK in serine phosphorylation, translocation, and degradation of IRS-1. Biochem. Biophys. Res. Commun., 2005. 335(3): p. 836-842.
106. Warfel, N.A., M. Niederst, and A.C. Newton, Disruption of the Interface between the Pleckstrin Homology (PH) and Kinase Domains of Akt Protein Is Sufficient for Hydrophobic Motif Site Phosphorylation in the Absence of mTORC2. J. Biol. Chem., 2011. 286(45): p. 39122-39129.
107. Fujioka, T., et al., Further evidence for the involvement of insulin receptor substrates in epidermal growth factor-induced activation of phosphatidylinositol 3-kinase. Eur J Biochem, 2001. 268(15): p. 4158-68.
108. Skolnik, E.Y., et al., The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J, 1993. 12(5): p. 1929-36.
109. Liu, L., Y. Xie, and L. Lou, PI3K is required for insulin-stimulated but not EGF-stimulated ERK1/2 activation. Eur J Cell Biol, 2006. 85(5): p. 367-74.
110. Szklarczyk, D., et al., STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 2019. 47(D1): p. D607-d613.
111. Jo, W.S. and J.M. Carethers, Chemotherapeutic implications in microsatellite unstable colorectal cancer. Cancer Biomark, 2006. 2(1-2): p. 51-60.
112. Carethers, J.M., et al., Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology, 2004. 126(2): p. 394-401.
113. Boland, C.R. and A. Goel, Microsatellite instability in colorectal cancer. Gastroenterology, 2010. 138(6): p. 2073-2087.e3.
114. Mhaidat, N.M., M. Bouklihacene, and R.F. Thorne, 5-Fluorouracil-induced apoptosis in colorectal cancer cells is caspase-9-dependent and mediated by activation of protein kinase C-δ. Oncology letters, 2014. 8(2): p. 699-704.
115. Lee, Y.-J., et al., 5-Fluorouracil as a Tumor-Treating Field-Sensitizer in Colon Cancer Therapy. Cancers, 2019. 11(12).
116. Huang, Y., et al., Mutant p53 drives cancer chemotherapy resistance due to loss of function on activating transcription of PUMA. Cell Cycle, 2019. 18(24): p. 3442-3455.
校內:2026-10-15公開