簡易檢索 / 詳目顯示

研究生: 陳玟婷
Chen, Wen-Ting
論文名稱: 光學活性有機凝膠體之超分子自組裝與特性探討
Supramolecular Self-assembly and Characterization of Chiral Organogelators
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 95
中文關鍵詞: 自組裝超分子凝膠氫鍵凝集誘導螢光增強
外文關鍵詞: self-assembly, supramolecular gel, hydrogen bond, aggregation-induced enhanced emission.
相關次數: 點閱:195下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功合成兩種螢光光學活性有機凝膠體Isosorbide-1, 4-bis [phenyl-4-(2-naphthamido)]benzoate(IPNB)與Cholesteryl N -(2-anthryl) carbamate (CAC),為了誘 導螺旋自組裝結構的形成,於分子設計上分別導入了光學活性基團isosorbide與膽固醇基團;並透過分別導入螢光基團萘與蒽於有機凝膠體結構中,探討形成有機凝膠前後所造成螢光被抑制與增強的效應。由SEM與TEM結果顯示,作為新穎性自組裝材料,具有膽固醇基團的有機凝膠體分子可自組裝形成高秩序性的螺旋纖維結構,並進一步自組裝形成三維網狀結構而形成穩定的超分子凝膠(supramolecular gel);由變溫1H-NMR圖譜變化可得知分子間氫鍵作用力、π-π堆疊和凡德瓦爾作用力確實有參與自組裝過程。透過凝膠化測試實驗可得知最小可凝膠化濃度。含isosorbide基團的凝膠體IPNB於形成凝膠後螢光由於濃度淬火效應而被抑制;而含膽固醇基團的凝膠體CAC於形成凝膠後螢光有被增強的效果,這是由於凝集誘導螢光增強效應所造成的螢光增強現象。

    Synthesis and characterization of two novel chiral fluorescent low-molecular-weight-gelators (LMWGs) based on isosorbide and cholesteryl groups with naphthalene and anthracene fluorescent moieties were investigated in this study. In order to induce the formation of helical constructions, chiral isosorbide and cholesteryl groups were introduced into LMWGs. Fluorescence emission behavior of the synthesized LMWGs was studied before and after gelation.
    From the results of SEM and TEM analyses, self-assembly of cholesteryl-contained LMWG forms highly-ordered helical fibers, further aggregation of the twisted fibers generates a 3D entangled network. Strong interaction between 3D entangled networks and organic solvents forms stable supramolecular gels. From results of 1H-NMR, intermolecular H-bonds and π-π interactions are considered to be the key factors for the formation of gels in benzene. The critical gelation concentration (CGC) was calculated via a typical gelation experiment. For the gelator based on isosorbide and naphthalene (IPNB) in pyridine/water (v/v=1/1), decrease of fluorescence intensity was observed. It could be due to the concentration quenching effect after formation of the gel. However, for the gelator based on cholesteryl and anthracene, a significant fluorescence enhancement after gelation was observed, which is ascribed to aggregation-induced enhanced emission (AIEE).

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII Scheme XIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機與方向 2 第二章 原理與文獻回顧 4 2-1 超分子化學 4 2-2自組裝超分子[3][4] 5 2-3凝膠簡介[13] 7 2-3-1 依據介質類型分類[14] 8 2-3-2 依據組成和相互作用力分類[14] 8 2-4超分子凝膠[14] 10 2-5小分子有機凝膠體(Low Molecular Weight Gelators, LMWGs) 11 2-5-1 Fatty Acid Derivatives Gelators 13 2-5-2 Steroid Derivatives Gelators 14 2-5-3 Amide or Urea Type Gelator 17 2-5-4 Two- Component Systems 25 2-5-5 Other gelator systems 26 2-6 超分子凝膠的應用 28 第三章 實驗部分 37 3-1 實驗藥品 37 3-2 實驗儀器 39 3-3 實驗步驟 40 3-3-1 含Naphthalene螢光基團的光學活性凝膠體之合成 40 3-3-2含Anthracene螢光基團的光學活性凝膠體之合成 42 3-4 不同溶劑下自組裝形成凝膠能力之測試 44 3-5 TEM與SEM試片製作 44 3-5-1 TEM試片製作 44 3-5-2 SEM試片製作 44 3-6 變溫1H-NMR樣品製作 44 第四章 結果與討論 45 4-1含Naphthalene螢光基團的光學活性LMWGs之鑑定 45 4-2含Anthracene螢光基團的光學活性LMWGs之鑑定 46 4-3 凝膠體分子熱性質、液晶相特性探討 49 4-4含螢光基團的光學活性LMWGs自組裝行為探討 52 4-4-1凝膠體於不同溶劑下凝膠化能力與臨界凝膠濃度之探討 52 4-4-2 CAC苯凝膠變溫1H-NMR核磁共振光譜之探討 61 4-4-3自組裝超分子凝膠微結構之探討 68 4-5含螢光基團的光學活性LMWGs螢光放射行為探討 81 第五章 結論 90 參考文獻 91

    [1] J. M. Lehn, Supramolecular Chemistry-Scope and Perspectives Molecules-Supermolecules-Molecular Devices, Nobel Lecture, 1987.
    [2]邱泰翔,環糊精-單體包容錯合物自組裝集合體及所形成螺旋高分子之製備及特性探討,國立成功大學化學工程研究所碩士論文,2008。
    [3] G. M. Whitesides, Beyond molecules: Self-assembly of mesoscopic and macroscopic components, Proceedings of the National Academy of Sciences(PNAS), 99, 4769, 2002.
    [4] G. M. Whitesides, and B. Grzybowski, Self-Assembly at All Scales, Science, 295, 2418, 2002.
    [5] K. E. Schwiebert, J. C. MacDonald, and G. M. Whitesides, Engineering the Solid State with 2-Benzimidazolones, J. Am. Chem. Soc., 118, 4018, 1996.
    [6] L. S. Mende, R. H. Friend, and J. D. MacKenzie, Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics, Science, 293, 1119, 2001.
    [7] E. L. Thomas, The ABCs of Self-Assembly, Science, 286, 1307, 1999.
    [8] S. Forster, From Self-Organizing Polymers to Nanohybrid and Biomaterials, Angew. Chem. Int. Ed., 41, 688, 2002.
    [9] D. Chapman, Micelles, Monolayers, and Biomembranes, Wiley Liss, New York, 1995.
    [10] G. M.Whitesides, Patterned Self-Assembled Monolayers and Meso-Scale Phenomena, Acc. Chem. Res., 28, 219, 1995.
    [11] V.Grantcharova, D. Baker, and A. L. Horwich, Mechanisms of protein folding, Curr. Opin. Struct. Bio., 11, 70, 2001.
    [12] H. Nabika, B. Takimoto, and K. Murakoshi, Molecular separation in the lipid bilayer medium: electrophoretic and self-spreading approaches, Anal Bioanal Chem, 391, 2497, 2008.
    [13] N. M. Sangeetha and U. Maitra, Supramolecular gels: Functions and uses, Chem. Soc. Rev., 34, 821, 2005.
    [14]李俊賢,含N, N'-二苯吡啶醯胺凝膠分子其自組裝行為硏究,國立臺灣師範大學化學研究所碩士論文,2009。
    [15]呂政錡,含Urea基團Triazine與Triarylamine衍生物之新型凝膠分子於不同溶劑下凝集效應與光學性質影響之探討,國立臺灣科技大學高分子工程研究所博士論文,2008。
    [16] D. J. Abdallah, and R. G. Weiss, n-Alkanes Gel n-Alkanes (and Many Other Organic Liquids), Langmuir, 16, 352, 2000.
    [17] P. Terech, and R. G. Weiss, Low Molecular Mass Gelators
    of Organic Liquids and the Properties of Their Gels, Chem. Rev., 97, 3133, 1997.
    [18] D. J. Abdallah and R. G. Weiss, Organogels and Low Molecular Mass Organic Gelators, Adv. Mater., 12, 1237, 2000.
    [19] A. T. Polishuk, J. Am. Soc. Lubn. Eng., 33, 133, 1977.
    [20] L. Lu, and R. G. Weiss, Gelation of Organic Liquids by Some 5α-Cholestan-3β-ylN-(2-Aryl)carbamates and 3β-Cholesteryl 4-(2-Anthrylamino)butanoates, Langmuir, 16, 20, 2000.
    [21] P.Terech, Reversible polymeric gels and related systems, American Chemical Society: Washington, DC, Chapter 9, 1987.
    [22] S. Abraham, R. K. Vijayaraghavan, and S. Das, Tuning Microstructures in Organogels: Gelation and Spectroscopic
    Properties of Mono-and Bis-cholesterol-Linked Diphenylbutadiene
    Derivatives, Langmuir, 25, 8507, 2009.
    [23] K. Hanabusa, K. Okui, K. Karaki, T. Koyama, and H. Shirai,
    Chem. Commun., 1371, 1992.
    [24] K. Hanabusa, J. Tange, Y.Taguchi, T. Koyama, and H.Shirai,
    Chem. Commun., 390, 1993.
    [25] U. Beginn, S. Sheiko, and M. Moeller, Self-organization of 3,4,5-tris(octyloxy)benzamide in solution and embedding of the aggregates into methacrylate resins, Macromol. Chem. Phys, 201, 871, 2000.
    [26] M. Hashimoto, and A. Mori, Low Molecular Weight Gelators with Hexagonal Order in Their Liquid-Crystal Phases and Gel States:5-Cyano-2(3,4,5-trialkoxybenzoylamino)tropones, Adv. Mater.,15, 797, 2003.
    [27] P. Zhang, H. Wang, and M. Li, Fluorescence-Enhanced Organogels and Mesomorphic Superstructure Based on Hydrazine Derivatives, Langmuir, 26, 10183, 2010.
    [28] K. Hanabusa, M. Yamada, and H. Shirai, Prominent Gelation and Chiral Aggregation of Alkylamides Derived from trans- l,2- Diaminocyclohexane, Angew. Chem. Int. Ed. Engl., 35, 1949, 1996.
    [29] Y. Yasuda, and Y. Shirota, Novel Low-molecular- weight Organic Gels: N,N’,N”-Tristearyltrimesamide/Organic Solvent System, Chemistry Letters, 575, 1996.

    [30] S. Hirofusa, and H. Kenji, Small Molecular Gelling Agents to Harden Organic Liquids: Trialkyl cis-1,3,5-Cyclohexane- tricarboxamides, Chemistry Letters, 191, 1997.
    [31] M. Ikeda, M. Takeuchi and S. Shinkai, Unusual emission properties of a triphenylene-based organogel system, Chem. Commun., 1354, 2003.
    [32] J.M. Lehn, M. Mascal, and J. Fischer, Molecular Recognition directed Self-assembly of Ordered Supramolecular Strands by Cocrystallization of Complementary Molecular Components,
    Chem Commun., 479, 1990.
    [33] F.Würthner, B. Hanke, M. Lysetska, and G. Lambright, Gelation of a Highly Fluorescent Urea-Functionalized Perylene Bisimide Dye, Organic Letters, 7, 967, 2005.
    [34] I. Hisaki, and M. Miyata, Octadehydrodibenzo[12] annulene-Based Organogels: Two Methyl Ester Groups Prevent Crystallization and Promote Gelation, Angew. Chem. Int. Ed., 48, 5465, 2009.
    [35] D. Chen, H. Liu, T. Kobayashib, and H. Yu, Multiresponsive reversible gels based on a carboxylic azo polymer, J. Mater.
    Chem., 20, 3610, 2010.
    [36] C. Wang, Q. Chen, F. Sun, D. Zhang, G. Zhang, and D. Zhu, Multistimuli Responsive Organogels Based on a New Gelator Featuring Tetrathiafulvalene and Azobenzene Groups: Reversible Tuning of the Gel-Sol Transition by Redox Reactions and Light Irradiation, J. Am Chem. Soc., 132, 3092, 2010.
    [37] M. Moriyama, N. Mizoshita, and T. Kato, Reversible On-Off Photoswitching of Hydrogen Bonding for Self-Assembled Fibers Comprising Physical Gels, Bull. Chem. Soc. Jpn., 79, 962, 2006.
    [38] M. Moriyama, N. Mizoshita, and T. Kato, Photoresponsive Anisotropic Soft Solids: Liquid-Crystalline Physical Gels Based on a Chiral Photochromic Gelator, Adv. Mater., 15, 1335, 2003.
    [39] Y. Kamikawa, and T. Kato, Color-Tunable Fluorescent Organogels: Columnar Self-Assembly of Pyrene-Containing Oligo(glutamic acid)s, Langmuir, 23, 274, 2007.
    [40] I. Dierking, Textures of Liquid Crystals, Wiley-VCH, 174, 2003.
    [41] S. K. Prasad, and S. Das, Formation of Highly Luminescent Supramolecular Architectures Possessing Columnar Order from Octupolar Oxadiazole Derivatives: Hierarchical Self-Assembly from Nanospheres to Fibrous Gels, Adv. Funct. Mater., 19, 2064, 2009.
    [42] M. Muccini, and R. Ziessel, Luminescent Ethynyl-Pyrene Liquid Crystals and Gels for Optoelectronic Devices, J. Am. Chem. Soc., 131, 18177, 2009.
    [43] K. Sada, and S. Shinkai, Transcription of Chirality in the Organogel Systems Dictates the Enantiodifferentiating Photodimerization of Substituted Anthracene, Chem. Eur. J., 16, 3676, 2010.
    [44] G. Palui and A. Banerjee, Fluorescent Gel from a Self-Assembling New Chromophoric Moiety Containing Azobenzene Based Tetraamide, J. Phys. Chem. B, 112, 10107, 2009.

    下載圖示
    2012-08-02公開
    QR CODE