| 研究生: |
施明良 Shih, Minliang |
|---|---|
| 論文名稱: |
六氟化硫於氧化及還原高週波電漿中之反應機制 Reaction Mechanism of Sulfur Hexafluoride in Oxidation and Reduction RF Plasma Environments |
| 指導教授: |
李文智
Lee, Wen-Jhy 陳志勇 Chen, Chuh-Yung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 模擬 、反應機制 、總毒性當量 、六氟化硫 、電漿 |
| 外文關鍵詞: | Total Equivalent Toxicity, Plasma, SF6, Reaction Mechanism, Modeling |
| 相關次數: | 點閱:161 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係利用高週波電漿系統,添加氧化劑(O2)或還原劑(H2或H2S),將六氟化硫(SF6)於室溫環境下進行分解。主要操作參數為輸入功率及反應物進流比(O2/SF6、H2/SF6與H2S/SF6比例)。研究內容包括探討反應物分解反應及最終產物分布,氧化電漿與還原電漿產物之毒性當量分析,並推論電漿系統之反應路徑,建構SF6/Ar電漿模型進行數值模擬及比較與實驗值差異,最後,提出SF6較佳處理方法之建議。
實驗結果顯示,輸入功率與反應物進流比皆為影響分解率(ηSF6)及產物分布之主要因素。分解率方面,在氧化與還原系統中,ηSF6皆隨著功率提高而增加,然而,當輸入功率小於40W時,ηSF6於氧化與還原系統則有不同趨勢。隨著進流O2/SF6比提高,抑制電子碰撞形成自由基,使得SF6分解降低。由於氟自由基容易與氫形成穩定HF產物,因此,當進流H2/SF6或H2S/SF6比提高時,促使ηSF6隨之明顯增加,然而,當功率增加至40W時,氧化與還原系統中ηSF6受到反應物進流比影響較不明顯。
產物分布方面,氧化與還原電漿系統主要共同分解產物為SiF4、SO2、SO2F2、SOF2、SOF4。然而,HF及硫元素沈積只有在還原電漿系統中發現。氧化電漿系統中,F2為SF6分解時含氟主要產物,且隨著功率提高而明顯增加。還原電漿系統中,HF為SF6分解時含氟之主要產物,同樣隨著功率提高而增加。SiF4來自氟自由基對SiO2反應器蝕刻作用產生,在氧化與還原電漿系統中,SiF4隨著功率提高皆有增加趨勢。然而,還原電漿系統中,HF形成與SiO2蝕刻作用彼此競爭氟自由基,因此,SiF4生成較不明顯。還原電漿系統中,硫元素沈積為含硫主要產物,且隨著功率提高而增加。然而,在氧化電漿系統中,並未發現硫沈積物。輸入功率是影響系統中SO2生成重要參數,氧化電漿系統中,低功率下,含硫產物以氟氧硫化物及SO2為主,而高功率下,含硫產物則從氟氧硫化物轉成以SO2為主。還原電漿系統中,SO2或是氟氧硫化物生成受制於SiO2蝕刻作用。
反應物進流比也是影響產物分佈重要因子。氧化電漿系統中,SF6分解率隨著加氧比提高而降低,使得F2生成降低,同時,蝕刻生成SiF4也隨之下降。氟氧硫化物隨著O2/SF6比提高而逐漸增加,然而,SO2生成隨著O2/SF6比提高而逐漸降低。當氫氣或硫化氫加入還原電漿系統時,HF生成隨著加氫比提高明顯急速上升,F2也由於氫之競爭反應而從系統消失,同時,蝕刻作用受到抑制,使得SiF4生成明顯下降。還原電漿系統中,由於蝕刻作用釋出之氧供應量不足,SO2生成則明顯受到抑制,且大部分含硫產物皆以元素硫存在。此外,隨H2/SF6比提高,氟氧硫化物則從還原電漿系統中消失。
氧化電漿與還原電漿產物毒性當量(TEQ)方面,SF6/O2/Ar電漿系統皆高於SF6/H2/Ar電漿系統。SF6/O2/Ar電漿系統中,TEQ毒性隨著功率提高急速增加,然而,SF6/H2/Ar電漿系統中,TEQ毒性隨著輸入功率提高,未有明顯增加。進流H2/SF6與O2/SF6比對於氧化及還原電漿系統TEQ毒性則無明顯影響。由於回收HF可減少系統毒性,回收元素硫可減少SO2排放,同時避免後續處理大量排放氣體之困擾,因此,以還原式RF電漿處理含SF6排放氣體,將是較佳之選擇。
The use of the radio-frequency (RF) plasma to decompose SF6 by adding oxidant (O2) or reductant (H2 and H2S) at room temperature was studied. The operational parameters were the applied RF power and the mixing ratio of reactants (O2/SF6, H2/SF6, and H2S/SF6). This study provides insight to the decomposition reaction, the product selectivity and the total equivalent (TEQ) toxicity of oxidation and reduction plasmas. The reaction mechanisms were elucidated and the SF6/Ar plasma kinetic reactions were performed to compare the experimental results and the results of numerical modeling. Finally, the treatment processes were evaluated.
The applied power and mixing ratio of the reactants were the most important parameters that affected the decomposition fraction and the product selectivity. The ηSF6 increased with the power in both the oxidation and the reduction plasmas. However, the trend of ηSF6 in oxidation plasma differed from that in the reduction plasma at a power below 40W. In the oxidation plasma, a higher O2/SF6 ratio yielded a lower electron density, suppressing the decomposition of SF6. However, hydrogen or hydrogen radicals reacted easily with fluorine radicals to form thermodynamically stable hydrogen fluoride that causedηSF6 to increase with the H2/SF6 or H2S/SF6 ratio in the reduction plasma. At power of up to 40W, the mixing ratio did not clearly influenceηSF6 in either oxidation or reduction plasma.
The dominant species detected in both the oxidation and reduction plasmas included SiF4, SO2, SO2F2 and SOF2. However, HF and sulfur deposition were observed only in the reduction plasmas. F2 and HF, both of them increasing with power, were the major fluorine-containing products in the oxidation and reduction plasmas, respectively. SiF4 was formed by etching of the SiO2 reactor. The formation of SiF4 increased with power in both the oxidation and reduction plasmas. However, competition between HF formation and SiO2 etching suppressed the formation of SiF4 in the reduction plasma. Sulfur deposition increased with power and this deposit was the main sulfur-containing product in the reduction plasmas. However, the oxidation plasma exhibited no sulfur deposition. The applied power was a significant factor that governed SO2 formation. At low power, the major sulfur-containing products were sulfur oxyfluorides and SO2 in the oxidation plasma. As the power increased, the selectivity shifted from sulfur oxyfluorides to SO2. In the reduction plasmas, SiO2 etching determined the source of oxygen and inhibited the formation of SO2 and sulfur oxyfluorides.
The mixing ratio of reactants was the other important parameter that affected the product selectivity. In the oxidation plasma,ηSF6 declined as the O2/SF6 ratio increased, also suppressing the formation of F2 and SiF4. The formation of sulfur oxyfluorides increased with O2/SF6 ratio. However, the formation of SO2 declined with O2/SF6 ratio. In the reduction plasma, the formation of HF increased sharply as hydrogen or hydrogen sulfide was added, causing F2 to disappear from the systems. Etching was inhibited and resulted in lower SiF4 formation. Meanwhile, the formation of SO2 was supressed and a considerable amount of sulfur deposition was found owing to the deficiency of oxygen. The sulfur oxyfluorides disappeared from the reduction plasmas as the H2/SF6 or H2S/SF6 ratio increased.
The TEQ toxicity of the SF6/O2/Ar plasma exceeded that of the SF6/H2/Ar plasma. In the SF6/O2/Ar plasma, the TEQ toxicity increased considerably with power. However, the increase in TEQ toxicity in the SF6/H2/Ar plasma was not obvious at all power. The mixing ratio of H2/SF6 or O2/SF6 did not seem to affect the TEQ toxicity of the two plasmas. Given the benefits of recovering HF to reduce toxicity and recovering sulfur deposition to reduce SO2 effluent, a reduction plasma is preferred in treating SF6 containing gases.
Abney, K. D.; Eller, P. G.; Eastman, M. P.; Pace, C. F.; Kinkead, S. A.; Kissane, R. J.; Woodruff, W. H. “Thermal Decomposition Reactions of Gaseous Dioxygen Difluoride and Dioxygen Fluoride at Ambient Temperature”, Journal of Fluorine Chemistry, Vol. 73, pp. 137-146. 1995.
Alivisatos, A. P. ”Semiconductor Clusters, Nanocrystals, and Quantum Dots”, Science, Vol. 271, pp. 933-937, 1996.
Arno, J.; Bevan, J. W. “Detoxification of Trichloroethylene in a Low-Pressure Surface Wave Plasma Reactor”, Environmental Science & Technology, Vol. 30, pp. 2427-2431, 1996.
Ashbaugh, P. G.; McAdam, D. W.; James, M. F. “SF6-Its properties and Uses as a Gaseous Insulator in Van der Graaf Accelerators”, IEEE Transactions on Nuclear Science, NS-12, 266, 1965.
Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, Jr. R. F.; Kerr, J. A.; Rossi, M. J.; Troe, J. “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry”, Journal of Physical and Chemical Reference Data, Vol. 18, pp. 881-1099, 1989.
Bains-Sahota, S. K.; Thiemens, H. “Mass-Independent Oxygen Isotopic Fractionation in a Microwave Plasma”, Journal of Physical Chemistry, Vol. 91, pp. 4370-4374, 1987.
Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Frank, P.; Hayman, G.; Just, T. H.; Kerr, J. A.; Murrells, T.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J. “Summary Table of Evaluated Kinetic Data for Combustion Modeling: Supplement 1”, Combustion and Flame, Vol. 98, pp. 59-79, 1994.
Becher, W.; Massonne, J. “Contribution to the Study of the Decompostion of SF6 in Electric Arcs and Sparks”, ETZ-A, Vol. 91, pp. 605-610, 1970.
Beenakker, C. I. A.; Van Dommelen, J. H. J.; Van de Poll, R. P. J. Journal of Applied Physics, Vol. 52, pp. 480, 1981.
Behr, P.; Goldbach, K.; Heydtmann, H. “The Reaction of Fluorine Atoms with Formyl Fluoride and the CFO Self-Reaction at 293 K”, International Journal of Chemical Kinetics, Vol. 25, pp. 957-967, 1993.
Benson, S. W. Thermochemical Kinetics, 2nd ed., Wiley, New York, pp. 209-266, 1976.
Benson, S. W. “Thermochemistry and Kinetics of Sulfur-Containing Molecules and Radicals”, Chemical Reviews, Vol. 78, pp. 23-35, 1978.
Boenig, H. V. Fundamentals of Plasma Chemistry and Technology; Technomic Publishing Co., Inc.: Lancaster, USA, 1988.
Bozzelli, J. W.; Barat, R. B. “Reactions of Water Vapor or Molecular Hydrogen with Trichloroethylene in a Microwave Plasma Reactor”, Plasma Chemistry and Plasma Processing, Vol. 8, pp. 293-314, 1988.
Breitbarth, F. W.; Berg, D.; Dumke, K.; Tiller, H. -J. “Investigation of the Low-Pressure Plasma-Chemical Conversion of Fluorocarbon Waste Gases”, Plasma Chemistry and Plasma Processing, Vol. 17, pp. 39-57, 1997.
Brown, L. C.; Bell, A. T. “Kinetics of the Oxidation of Carbon Monooxide and the Decomposition of Carbon Dioxide in a Radiofrequency Electric Discharge. I. Experimental Results”, Industrial & Engineering Chemistry Fundamentals, Vol. 13, pp. 203-210, 1974a.
Brown, L. C.; Bell, A. T. “Kinetics of the Oxidation of Carbon Monooxide and the Decomposition of Carbon Dioxide in a Radiofrequency Electric Discharge. II. Theoretical Interpretation”, Industrial & Engineering Chemistry Fundamentals, Vol. 13, pp. 210-218, 1974b.
Brus, L. “Quantum Crystallites and Nonlinear Optics”, Applied Physics A, Solids and Surfaces, Vol. 53, pp. 465-474, 1991.
Chang, J. S.; Kostov, K. G.; Urashima, K.; Yamamoto, T.; Okayasu, Y.; Kato, T.; Iwaizumi, T.; Yoshimura, K. “Removal of NF3 from Semiconductor-Process Flue Gases by Tandem Packed-Bed Plasma and Adsorbent Hybrid Systems” IEEE Transactions on Industry Applications Vol. 36, pp. 1251-1259, 2000.
Chase, M. W. “JANAF Thermochemical Tables”, 3rd Edition, American Chemical Society: Washington D. C., 1986.
Chen, F. F. “Introduction to Plasma Physics and Controlled Fusion, Vol. I Plasma Physics”, 2nd Edition, Plenum Press: New York, 1983.
Chen, C. K.; Wei, T. C.; Collins, L. R.; Phillips, J. “Modeling the Discharge Region of a Microwave Generated Hydrogen Plasma”, Journal of Physics D: Applied Physics, Vol. 32, pp. 688-698, 1999.
Christophorou, L. G.; Van Brunt R. J. “Sulfur Hexafluoride and the Electric Power Industry”, IEEE Electrical Insulation Magazine, Vol. 13, pp. 20-24, 1997.
Chu, F. Y. “SF6 Decomposition in Gas-Insulated Equipment”, IEEE Transaction on Electrical Insulation, Vol. EI-21, pp. 693-725, 1986.
Coburn, J. W. “In situ Augar Electron Spectroscopy of Si and SiO2 Surfaces Plasma Etched in CF4-H2 Golw Discharges”, Journal of Applied Physics, Vol. 50, pp. 5210-5213, 1979.
Cukier, R. I.; Levine, H. B.; Shuler, K. E. “Nonlinear Sensitivity Analysis for Multiparameter Model system”, Journal of Computational Physics, Vol. 26, pp. 1-42, 1978.
d'Agostino R.; Flamm, D. L. “Plasma Etching of Si and SiO2 in SF6-O2 Mixtures”, Journal of Applied Physics, Vol. 52, pp. 162-167, 1981.
Dean, A. M. “Predictions of Pressure and Temperature Effects upon Radical Addition and Recombination Reactions”, Journal of Physical Chemistry, Vol. 89, pp. 4600-4608, 1985.
Dean, A. M.; Bozzelli, J. W.; Ritter, E. P. “Chemact: A Computer Code to Estimate Rate Constants for Chemically-Activated Reactions”, Combustion Science and Technology, Vol. 80, pp. 63-85, 1991.
Dervos, C. T. “Sulfur Hexafluoride (SF6): Global Environmental Effects and Toxic Byproducts Formation”, Journal of the Air & Waste Management Association, Vol. 50, pp. 137-141, 2000.
Dougherty, E. P.; Hwang, J. T.; Rabitz, H. “Further Developments and Applications of the Green's Function Method of Sensitivity Analysis in Chemical Kinetics”, The Journal of Chemical Physics, Vol. 71, pp.1794-1808, 1979.
Eisele, K. M. “SF6, a Preferable Etchant for Plasma Etching Silicon”; Journal of the Electrochemical Society, Vol. 128, pp. 123-126, 1981.
Ermel, M. Elektrotechnology Z-A, Vol. 96, 231, 1975.
Eliasson, B.; Kogelschatz, U. “Nonequilibrium Volume Plasma Chemical Processing”, IEEE Transactions on Plasma Science, Vol. 19, No. 6, pp. 1063-1077, 1991.
Esposito, F.; Colonna, G.; Longo, S.; Capitelli, M. “Monte Carlo Global Sensitivity Analysis of Boltzmann Equation for Electron Kinetics in H2 Discharges”, Plasma Chemistry and Plasma Processing, Vol. 16, pp. 1-16, 1996.
Fan, W. Y.; Knewstubb, P. F.; Kaning, M.; Mechold, L.; Ropcke, J.; Davies, P. B. “A Diode Laser and Modeling Study of Mixed (CH4-H2-O2) AC Plasmas”, The Journal of Physical Chemistry A, Vol. 103, pp. 4118-4128, 1999.
Flint, R. W.; Vena, J. Human Health Risks from Chemical Exposure: The Great Lakes Ecosystem, Lewis Publishers Inc., Michigan, 1991.
Goldenberg, M.; Frenklach, M. “A Post-Processing Method for Feature Sensitivity Coefficients”, International Journal of Chemical Kinetics, Vol. 27, pp. 1135-1142, 1995.
Grasselt, H.; Ecknig, W.; Polster, H. J. “Applications of Gas Chromatography for the Development of SF6 Insulated Switchgear and Equipment”, Elektrie, Vol. 32, pp. 369-371, 1978.
Griffin, G. D.; Nolan, M. G.; Easterly, C. E.; Sauers, I.; Votaw, P. C. “Concerning Biological Effects of Spark-decomposed SF6”, IEE Proceedings 137 Pt. A, pp. 221-227, 1990.
Heinecke, R. A. H. “Control of Relative Etch Rates of SiO2 and Si in Plasma Etching”, Solid-State Electronics, Vol. 18, pp. 1146-1147, 1975.
Heise, H. M.; Kurte, R.; Fischer, P.; Klockow, D.; Janissek, P. R. “Gas Analysis by Infrared Spectroscopy as a Tool for Electrical Fault Diagnostics in SF6 Insulated Equipment”, Fresenius' Journal of Analytical Chemistry, Vol. 358, pp. 793-799, 1997.
Herlitz, H. G. “Plasma Technology”, Environmental Science & Technology, Vol. 20, pp. 1102-1105.
Hernández, L.; de Melo, O.; Zelaya-Angel, O.; Lozada-Morales, R.; Purón E. “Electro-Optical Characterization of Sulfur-Annealed Chemical-Bath Deposited CdS Films”, Journal of the Electrochemical Society, Vol. 141, pp. 3238-3241, 1994.
Hirooka, K.; Kuwahara, H.; Noshiro, M.; Jitsugiri, Y. “Decomposition Products of SF6 Gas by High Current Arc and Their Reaction Mechanism”, Electrical Engineering in Japan, Vol. 95, 1975.
Hsieh, L. T.; Lee, W. J.; Chen, C. Y.; Chang, M. B.; Chang, H. C. “Converting Methane by Using an RF Plasma Reactor”, Plasma Chemistry and Plasma Processing, Vol. 18, pp. 215-239, 1998a.
Hsieh, L. T.; Lee, W. J.; Li, C. T.; Chen, C. Y.; Wang, Y. F.; Chang, M. B. “Decomposition of Carbon Dioxide in the RF Plasma Environment”, Journal of Chemical Technology and Biotechnology, Vol. 73, pp. 432-442, 1998b.
Hsieh, L. T.; Lee, W. J.; Chen, C. Y.; Wu, Y. P. G.; Chen, S. J.; Wang, Y. F. “Decomposition of Methyl Chloride by Using an RF Plasma Reactor”, Journal of Hazardous Materials, Vol. 63,pp. 69-90, 1998c.
Itoh, H.; Taheyama, Y.; Ikeda, M.; Satoh, K.; Nakao, Y.; Tagashira, H. “Spectroscopic and Image Intensified Investigations of RF Plasmas in H2 and CH4 mixtures”, IEE Proceedings. A, Science, Measurement and Technology, Vol. 141, pp. 95-98, 1994.
James, D. R.; Sauers, I.; Griffin, G. D.; Van Brunt, R. J.; Othoff, J. K.; Stricklett, K. L.; Chu, F. Y.; Robins, J. R.; Morrison, H. D. “Investigation of S2F10 Production and Mitigation in Compressed SF6-Insulated Power Systems”, IEEE Electrical Insulation Magazine, Vol. 9, pp. 29-51, 1993.
Kee, R. J., Rupley, F. M.; Miller, J. A. Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, SANDIA REPORT, SAND89-8009B UC-706, reprinted. pp. 9-127, 1993.
Keller, N.; Pham-Huu, C.; Ledoux, M. J. “Continuous Process for Selective Oxidation of H2S over SiC-supported Iron Catalysts into Elemental Sulfur above its Dewpoint”, Applied Catalysis A, Vol. 217, pp. 205-217, 2001.
Kern, W. “The Evolution of Silicon Wafer Cleaning Technology”, Journal of the Electrochemical Society, Vol. 137, pp. 1887-1892, 1990.
Kirmse, K. H. R.; Wendt, A. E.; Disch. S. B.; Wu, J. Z.; Abraham, I. C.; Meyer, J. A.; Breun, R. A.; Woods, R. C. “SiO2 to Si Selectivity Mechanisms in High Density Fluorocarbon Plasma Etching”, Journal of Vacuum Science & Technology B, Vol. 14, pp. 710-715, 1996.
Kline, L. E. “Electron and Chemical Kinetics in the Low-Pressure RF Discharge Etching of Silicon in SF6”, IEEE Transactions on Plasma Science, Vol. PS-14, pp. 145-155, 1986.
Kóréh, O.; Rikker, T.; Molnár, G.; Mahara, B. M.; Torkus, K.; Borossay, J. “Study of Decomposition of Sulphur Hexafluoride by Gas Chromatography/Mass Spectrometry”, Rapid Communications in Mass Spectrometry: RCM, Vol. 11, pp. 1643-1648, 1997.
Kurte, R.; Heise, H. M.; Klockow, D. “Analysis of Spark Decomposition Products of SF6 Using Multivariate Mid-infrared Spectrum Evaluation”, Journal of Molecular Structure, Vol. 480-481, pp. 211-217, 1999.
Kurte, R.; Heise, H. M., Klockow, D. “Quantitative Infrared Spectroscopic Analysis of SF6 Decomposition Products Obtained by Electrical Partial Discharges and Sparks Using PLS-calibrations”, Journal of Molecular Structure, Vol. 565, pp. 505-513, 2001.
Lampe, J.; Latour-Slowikowska, H.; Slowikowska, J. “Study on Metal Fluoride Products Formation Caused by an Electric Arc in SF6”, Gaseous Dielectrics III, L. G. Chritophorou (Ed.) Pergamon Press, 1982.
Law, V. J.; Sharma, Y. “Computation of the Gradient and Sensitivity Coefficients in Sum of Squares Minimization Problems with Differential Equation Models”, Computers Chemical Engineering, Vol. 21, pp. 1471-1479, 1997.
Lee, W. J.; Chen, C. Y.; Lin, W. C.; Wang, Y. T.; Chin, C. J. “Phosgene Formation from the Decomposition of 1,1-C2H2Cl2 Contained Gas in an RF Plasma Reactor”, Journal of Hazardous Mateials, Vol. 48, pp. 51-67, 1996.
Legator, M. S.; Singleton, C. R.; Morris, D. L.; Philips, D. L. “Health Effect from Chronic Low-Level Exposure to Hydrogen Sulfide”, Archives of Environmental Health, Vol. 56, pp. 123-, 2001.
Li, C. T.; Lee, W. J.; Chen, C. Y.; Wang, Y. T. “CH2Cl2 Decomposition by Using a Radio-Frequency Plasma System”, Journal of Chemical Technology and Biotecnology, Vol. 66, pp. 382-388, 1996.
Liao, W. T.; Lee, W. J.; Chen, C. Y.; Hsieh, L. T.; Lai, C. C. “Decomposition of Ethoxyethane in the Cold Plasma Environment”, Journal of Chemical Technology and Biotecnology, Vol. 75, pp. 817-827, 2000.
Liao, W. T.; Lee, W. J.; Chen, C. Y.; Shih, M. “Decomposition of Ethylene Oxide in the RF Plasma Environment”, Environment Technology, Vol. 22, pp. 165-174, 2001.
Lindberg, B. J.; Hamrin, K.; Johansson, G.; Gelius, U.; Fahlman, A.; Nordling, C.; Siegbahn, K. “Molecular Spectroscopy by Means of ESCA”, Physica Scripta, Vol. 1, pp. 286-298, 1970.
Logue, J. N.; Ramaswamy, K. H.; Joel, H. “Investigation of Illness Associated with Exposure to Hydrogen Sulfide among Pennsylvania School Students”, Journal of Environmental Health, Vol. 63, pp. 9, 2001.
Lutz, A. E.; Kee, R. T.; Miller, J. A. SENKIN: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, SANDIA REPORT, SANDIA87-8248, pp. 1-32, 1992.
Maiss, M.; Brenninkmeijer, C. A. M. “Atmospheric SF6: Trends, Sources, and Prospects”, Environmental Science & Technology, Vol. 32, pp. 3077-3086, 1998.
Manion, J.; Phiolsophos, J; Robinson, M. “Arc Stability of Electronegative Gases”, IEEE Transactions on Electrical Insulation, EI-1, Vol. 1, 1967.
Marinelli, L.; Worth, W. “Global Warming: A White Paper on the Science, Policies and Control Technologies that Impact the U.S. Semiconductor Industry”, Technology Transfer #93112074A-TR SEMATECH, 1994.
McMurry, J.; Fay, R. C. Chemistry, Second Ed., Prentice-Hall, Inc., USA, 1998.
Miller, G. P.; Baird, J. K. “Radio Frequency Plasma Decomposition of Ammonia: A Comparison with Radiation Chemistry Using the G Value”, Journal of Physical Chemistry, Vol. 97, pp. 10984-10988, 1993.
Nordheden, K. J.; Upadhyaya, K.; Lee, Y. -S.; Gogineni, S. P.; Kao, M. -Y. “GaAs Etch Rate Enhancement with SF6 Addition to BCl3 Plasmas”, Journal of the Electrochemical Society, Vol. 147, pp. 3850-3852, 2000.
Padma, D. K.; Murthy, A. R. “Thermal Decomposition of SF6”, Journal of Fluorine Chemistry, Vol. 5, pp. 181-194, 1975.
Persky, A.; Kornweitz, H. “The Kinetics of the Reaction F + H2 → HF + H. A Critical Review of Literature Data”, International Journal of Chemical Kinetics, Vol. 29, pp. 67-, 1997.
Piemontesi, M.; Niemeyer, L. “Sorption of SF6 and SF6 decomposition products by activated alumina and molecular sieve 13X”, Conference Record of the 1996 IEEE International Symposium on Electrical Insulation, Montreal, Quebec, Canada, June 16-19, pp. 828-838, 1996.
Piemontesi, M.; Pietsch R.; Zaengl, W. “Analysis of Decomposition Products of Sulfur Hexafluoride in Negative DC Corona with Special Emphasis on Content of H2O and O2”, Conference Record of the 1994 IEEE International Symposium on Electrical Insulation, Pittsburgh, PA, USA, 1994.
Plumb, I. C.; Ryan, K. R. “Gas-Phase Reactions in Plasmas of SF6 with O2: Reactions of F with SOF2 and SO2 and Reactions of O with SOF2”, Plasma Chemistry and Plasma Processing, Vol. 9, pp. 409-420, 1989.
Pradayrol, C.; Casanovas, A. M.; Hernoune, A.; Casanovas, J. “Spark Decomposition of SF6 and SF6 + 50% CF4 Mixtures”, Journal of Physics D: Applied Physics, Vol. 29, pp. 1941-1951, 1996.
Pradayrol, C.; Casanovas, A. M.; Aventin, C.; Casanovas, J. “Production of SO2F2, SOF4, (SOF2+SF4), S2F10 and S2O2F10 in SF6 and (50-50) SF6-CF4 Mixtures Exposed to Negative Coronas” Journal of Physics D: Applied Physics, Vol. 30, pp. 1356-1369, 1997.
Rauf, S.; Kushner, M. J. “Argon Metastable Densities in Radio Frequency Ar, Ar/O2 and Ar/CF4 Electrical Discharges”, Journal of Applied Physics, Vol. 82, pp. 2805-2813, 1997.
Ritter, E. R.; Bozzelli, J. W.; Dean, A. M. “Kinetic Study on Thermal Decomposition of Chlorobenzene Diluted in H2”, Journal of Physical Chemistry, Vol. 9, pp. 2493-2504, 1990.
Ruegasegger, W.; Kneubhhl, F. K.; Schotzen, H. J. “Mass Spectrometry of High Pressure Arcs in Air and SF6”, Applied Physics B, Vol. 31, pp. 9-13, 1983.
Ryan, K. R.; Plumb, I. C. “Gas-Phase Reactions of CF2 with O(3P) to Produce COF: Their Significance in Plasma Processing”, Plasma Chemistry and Plasma Processing, Vol. 4, pp. 271-283, 1984.
Ryan, K. R.; Plumb, I. C. “Gas-Phase Combination Reactions of SF4 and SF5 with F in Plasmas of SF6”, Plasma Chemistry and Plasma Processing, Vol. 8, pp. 281-291, 1988a.
Ryan, K. R.; Plumb, I. C. “Gas-Phase Reactions in Plasmas of SF6 with O2 in He”, Plasma Chemistry and Plasma Processing, Vol. 8, pp. 263-280, 1988b.
Ryan, K. R. “Aspects of the Chemistry of SF6/O2 Plasmas”, Plasma Chemistry and Plasma Processing, Vol. 9, pp. 483, 1989.
Ryan, K. R.; Plumb, I. C. “Gas Phase Reactions in Plasmas of SF6 with O2 in He”, Plasma Chemistry and Plasma Processing, Vol. 8, pp. 263-280, 1988.
Ryan, K. R.; Plumb, I. C. “A Model for the Etching of Silicon in SF6/O2 Plasma”, Plasma Chemistry and Plasma Processing, Vol. 10, pp. 207-229, 1990.
Sadeghi, N.; Debontride, H.; Turban, G.; Peignon, M. C. “Kinetics of Formation of Sulfur Dimers in Pure SF6 and SF6-O2 Discharges”, Plasma Chemistry and Plasma Processing, Vol. 10, pp. 553-569, 1990.
Schumb, W. C.; Trump, J.; Priest, G. “Effect of High Voltage Electrical Discharge on SF6”, Industrial and Engineering Chemistry, Vol. 41, pp. 1348-1351, 1949.
Senkan, S. M. “Converting Methane by Chlorine-Catalyzed Oxidative Pyrolysis”, Chemical Engineering Science, Vol. 83, pp. 58-61, 1987.
Sheng, H. Y.; Fujita, D.; Ohgi, T.; Okamoto, H.; Nejoh, H. “Submicrometer Transmission Mask Fabricated by Low-temperature SF6/O2 Reactive Ion Etching and Focused Ion Beam”, Journal of Vacuum Science & Technology B, Vol. 16, pp. 2982-2985, 1998.
Shimozuma, M.; Tochitani, G.; Tagashira, H. “Optical Emission Diagnostics of H2+CH4 50Hz-13.56MHz Plasmas for Chemical Vapor Deposition”, Journal of Applied Physics, Vol. 70, pp. 645-648, 1991.
Siddagangappa, I. C.; Van Brunt, R. J. Proceedings of the 8th International Conference on Gas Discharge and Their Applications, Leeds University Press, 247, 1985.
Singh, V.; Singh, B. P.; Lal, K.; Tyagi, R. C.; Sharma, T. P. “Effect of Ambient H2S on the Optical, Structural and Electrical Properties of Vacuum Deposited Thin Films of Cadmium Sulphide”, Indian Journal of Engineering and Materials Sciences, Vol. 9, pp. 153, 2002.
Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of Instrumental Analysis, Fifth ed., Saunders College Publishing, USA, 1998.
Smolinsky, G.; Flamm, D. L. “The Plasma Oxidation of CF4 in a Tubular-alumina Fast-flow Reactor”, Journal of Applied Physics, Vol. 50, pp. 4982-4987, 1979.
St-Onge, L.; Sadeghi, N.; Booth, J. P.; Margot, J.; Barbeau, C. “On the Formation and Loss of Molecular in a Reactive Ion Etching Reactor Operating with SF6”, Journal of Applied Physics, Vol. 78, pp. 6957-6966, 1995.
Suzuki, T.; Nokayama, S.; Yoshimitsu, T. “Degradation of Insulating Materials Including SiO2 due to SF6 Gas Dissociation Products”, IEEE Transactions on Electrical Insulation, EI-15, pp. 53-58, 1980.
Taneja, P.; Vasa, P.; Ayyub, P. “Chemical Passivation of Sputter-Deposited Nanocrystalline CdS Thin Films”, Materials Letters, Vol. 54, pp. 343, 2002.
Tezuka, M.; Yajima, T. “Oxidation of Aromatic Hydrocarbons with Oxygen in A Radiofrequency Plasma”, Plasma Chemistry and Plasma Processing, Vol. 16, pp. 329-340, 1996.
Thorburn, R. “Permanent Dissociation of SF6 in Corona Discharge”, Nature, Vol. 175, 423, 1955.
Tokuyama, S.; Yushioka, Y.; Nakazima, F.; Arikawa, Y. “Analysis of SF6 Gas Decomposition due to Current Interruption”, 2nd International Conference on Gas Discharges, IEE Congerence Publish, Vol. 90, 200, 1972.
Tominaga, S.; Kuashara, H.; Hirooka, K.; Yoshioka, T. “SF6 Gas Analysis Techniques and its Application for Evaluation of Internal Conditions in SF6 Gas Equipment”, IEEE Transactions on PAS, PAS-100, pp. 4196-4206, 1981.
Van Brunt, R. J. “Production Rates for Oxyfluorides SOF2, SO2F2 and SOF4 in SF6 Corona Discharge”, Journal of Research-National Bureau of Standards, Vol. 90, pp. 229-253, 1985.
Van Brunt, R. J.; Herron, J. T.; Fenimore, C. Proceeding of the 8th International Conference on Gas Discharge and Their Applications, Leeds University Press, Oxford, 247, 1987.
Van Brunt, R. J.; Herron, J. T. “Fundamental Processes of SF6 Decomposition and Oxidation in Glow and Corona Discharges” IEEE Transactions on Electrical Insulation, Vol. 25, pp. 75-94, 1990.
Waddington, F. B.; Heights, J. “SF6 Insulation for Current Transformers”, AEI Engineering, Vol. 7, pp. 196-199, 1967.
Wang, R. “Investigation of Hydrogen Sulfide Removal and Sulfur Recovery from Low Sulfur Containing Gases with Aqueous Solution of Heteropoly Compound”, Journal of Chemical Engineering Japan, Vol. 15, 35, 2002.
Wang, Y. F.; Lee, W. J.; Chen, C. Y.; Hsieh, L. T. “Reaction Mechanisms in Both a CHF3/O2/Ar and CHF3/H2/Ar Radio Frequency Plasma Environment”, Industry and Engineering Chemistry Research, Vol. 38, pp. 3199-3210, 1999a.
Wang, Y. F.; Lee, W. J.; Chen, C. Y.; Hsieh, L. T. “Decomposition of Dichlorodifluoromethane by Adding Hydrogen in a Cold Plasma System”, Environmental Science & Technology, Vol. 33, pp. 2234-2240, 1999b.
Wang, Y. F.; Lee, W. J.; Chen, C. Y.; Wu, Y. P. G.; Chang-Chien, G. P. “Reaction Mechanisms in Both a CCl2F2/O2/Ar and a CCl2F2/H2/Ar RF Plasma Environment”, Plasma Chemistry and Plasma Processing, Vol. 20, pp. 469-494, 2000.
Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy, Editor: Muilenberg, G .E., Perkin-Elmer Corporation, U.S.A., 1979.
Wilkins, R. L. “Thermodynamics of SF6 and its Decomposition and Oxidation Products”, Journal of Chemical Physics, Vol. 51, pp. 853-854, 1969.
Winters, H. F.; Coburn, J.W.; Kay, E. “Plasma Etching - a Pseudo-Black-Box Approach”, Journal of Apply Physics, Vol. 48 pp. 4973-4983, 1977.
Zachariah, M. R.; Smith, O. I. “Experimental and Numerical Studies of Sulfur Chemistry in H2/O2/SO2 Flames”, Combustion and Flame, Vol. 69, 125, 1987.
吳友平,“Detailed Reaction Mechanism for Oxidation of Chlorinated Hydrocarbons”, 國科會成果報告,NSC83-0402-E197-00;NSC84-2214-E197-001,1995。
呂榮峰,吳關佑,張木彬,”半導體製程之全氟化物控制技術”,國立中央大學環境工程學刊,第八期,pp. 143-157,2002。
余榮彬,”半導體業溫室效應氣體全氟化物排放減量最新發展”,環境工程會刊,第13卷,第1期,2002。
高正雄,「電漿化學」,復漢出版社,1997。
袁中新,洪昭南,戴哲生,”以高週波電漿反應器分解氨氣之探討”,第九屆空氣污染控制技術研討會,pp. 573,1992。
黃健勝,張國慶,”廢棄物及廢氣熱電漿裂解技術” 第七屆廢棄物處理技術研討會,pp. 323,1992。
堤井信力,”現代電漿工程及其應用”,電漿工程技術研討會,雲林科技大學,2001。
劉有台,鄭淑蕙,”噴射是電漿處理含氟有害廢棄技術介紹”,化工資訊,pp. 54-60,2001。
賴耿陽 編譯,「電漿工學的基礎」,復文書局,1986。
謝連德,高週波電漿反應器中二氧化碳及甲烷之反應機制,國立成功大學環境工程學系,博士論文,1998。