| 研究生: |
顏肇佑 Yen, Chao-Yu |
|---|---|
| 論文名稱: |
以PTA被覆NbC於純Ti:被覆層之微觀組織特徵與沖蝕磨耗特性之研究 Microstructural Feature and Erosion Wear Behavior of PTA-overlayed NbC on Pure Ti |
| 指導教授: |
陳立輝
Chen, Li-Hui 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 碳化物 、沖蝕磨耗 、電漿 |
| 外文關鍵詞: | NbC, TiC, PTA |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於鈦金屬的耐蝕性、質輕、強度高及延展性佳等特性,廣泛應用在航太、石化及生醫工業等方面上,但當鈦金屬應用在核能電廠或光電玻璃面板所需研磨漿料之輸送管路上,卻面臨嚴重的沖蝕磨耗破壞問題。因此本研究利用PTA(plasma transferred arc)被覆強化顆粒-NbC於商業純鈦表面,並藉由改變電流觀察其被覆層、被覆層與基材之界面間的凝固組織及硬度的變化情形,並探討被覆層之沖蝕磨耗機制。沖蝕試驗選用之顆粒為粒徑約295μm之SiO2,且沖蝕速度選擇為66 m/sec。
實驗結果顯示,高、低電流所得之被覆層為基地相固溶約10 at.% Nb及1 at.% C之α-Ti,NbC顆粒及NbC熔解後與Ti反應而重新晶出的TiC則散佈於基地相中,而由於NbC較鈦密度為高所導致的沉澱現象,因此被覆後以α-Ti為主之被覆層橫截面因碳化物種類及組織的不同,由表面端至基材端可大致分為:均為TiC的上被覆層、TiC+NbC共存的下被覆層、界面區(界面層、部份熔解區)及基材(包括熱影響區)。另外因凝固由界面開始,因此界面區之TiC均較微細,同時因低被覆電流凝固速率較快,因此TiC晶出顆粒較高被覆電流微細,上被覆層的樹枝狀TiC晶出組織也有細化的傾向。同時由於異質成核效應,TiC晶出也見於NbC周圍。TiC與NbC中間則有一層可能因擴散反應而形成之βNb2C相,且高被覆電流所得的擴散層較低被覆電流者為厚。
被覆層由於固溶強化效應,所得之微硬度值較基材高,同時由於固溶C之強化效應較固溶Nb為高,因此高被覆電流固溶C較多情形下也顯示其微硬度較低被覆電流為高。另外由於固溶強化效應及第二相顆粒(NbC+TiC)的強化,因此被覆層之體硬度顯著高於基材,而高被覆電流被覆層之體硬度值則隨著碳化物面積率增加(特別是TiC之硬度高,所以其強化效應較佳)及固溶效應增加較低被覆電流有所提升。
沖蝕磨耗試驗顯示低角度磨耗機構主要因微切削、剷犁造成塑性變形,進而進行破壞而有溝槽現象產生;高角度磨耗機構主要為TiC、NbC的誘發而造成之沖蝕脆性破壞。由於NbC、TiC在高角度情況下之脆性破壞主導磨耗機制(NbC脆裂情形較嚴重),低角度則為α-Ti之延性破壞主導磨耗機制,同時在沖蝕磨耗特徵觀察上也發現被覆層於45o沖蝕條件有嚴重溝槽形貌,顯示材料容易被沖蝕移除。此外,當降低沖蝕角度(特別是15o以下),沖蝕脆性龜裂現象則不明顯。所以在低角度可見被覆層有較佳的耐磨耗阻抗,高角度則以純鈦較佳。另外由於高被覆電流在15o之NbC破壞情形較低被覆電流略為嚴重,且固溶強化雖提昇硬度,但脆性相對增加,因此高被覆電流之磨耗阻抗較低被覆電流者差。最後也發現NbC外圍之擴散層有較NbC、TiC佳的磨耗阻抗(特別是低角度沖蝕情形下),所以若能提高此層的厚度,也能提昇被覆層的磨耗阻抗。
Titanium has been widely used in aviation, petroleum, chemistry and biological medicine industry because of its good corrosion resistance, low density, high mechanical strength and good ductility. However, titanium will face erosion wear problem when it’s used in nuclear power plants or delivery pipe of grinding liquid used for photoelectrical glass plate. This study is to overlay reinforcing particle-NbC on the surface of commercially pure Ti with the technique of PTA (plasma transferred arc) to investigate not only the microstructural feature of overlayer, interface between overlayer and base metal but also the hardness profile by changing overlaying current. In addition, the purpose of this study will show the erosion wear mechanism of the overlayer. The SiO2 particle of 295mm mean diameter was selected as the erodent and the erosion speed is about 66 m/sec.
The results indicate that the matrix phase of the overlayer is α-Ti con- taining about 10 at. % Nb and 1 at. % C. NbC and precipitated TiC produced by dissolution of NbC reacting with Ti dispersed in the matrix. Higher density of NbC than Ti resulted in NbC deposited in the bottom of the overlayer. Therefore, by the differences of species of carbides and microstructure, the cross section of the overlayer (from surface to base metal) which is mainly made of α-Ti can be separated with four layers: upper overlayer with TiC, lower overlayer with TiC and NbC, interface region (interfacial layer and partially melted zone) and base metal (heat affected zone). Because solidification begins at the interface, the TiC in the interface was finer. Owing to faster solidification in the low-current condition, the TiC particle was finer than high-current one. Meanwhile, TiC precipitate due to heterogeneous nucleation can also be found around NbC. The diffusion layer between TiC and NbC may be βNb2C phase and the layer was thicker in the high current condition.
Owing to the solution hardening effect, the Vickers Hardness (H.V.) of the overlayer was higher than base metal. Besides, the overlayer of high current contained more C, the H.V. in all regions was higher than the low -current overlayer (the solution hardening of C is better than Nb). Due to the solution and second-phase particle (NbC+TiC) hardening, the Rockwell Hardness (HRC.) of the overlayer enhanced a lot compared with base metal and the HRC. of high-current overlayer increased as the carbide area percentage increased (especially the harder TiC’s got better hardening effect).
Erosion wear test showed that under low impact angle, it’s microcutting and plowing lead to plastic deformation and grooving; under high impact angle, it’s brittle fracture of NbC and TiC lead to cracking. Because the fracture of NbC and TiC lead the high-angled erosion mechanism (the fracture of NbC is more serious), the ductile destruction of α-Ti lead the low-angled erosion mechanism and the grooving phenomenon was the most obvious at about 45o, it means the material can be easily removed. In addition, under low-angled impact (especially below the angle of 15o), the fracture of NbC was unobvious. Therefore, the overlayer’s got better erosion resistance under low angle impact while pure Ti’s got better one under high angle impact. Because the fracture of NbC of high current was more severe than low current one and solution hardening increased the hardness of the overlayer, though, the brittleness enhanced, high-current overlayer’s got worse erosion resistance than low-current one. The result also showed that the diffusion layer’s got better erosion resistance than NbC and TiC especially under oblique erosion, so if we can enhance the thickness of the layer, we can improve the erosion resistance of the overlayer.
1. K. P. Cooper, P. L. Slebodnick, K. E. Lucas and E. A. Hogan, “Microstructural Inhomogeneities and Sea Water Corrosion in Laser-Deposited Ti-6Al-4V Alloy Matrix/Carbide Particulate Composite Surfaces”, J. Mater. Sci., 33, (1998), pp.3805-3816.
2. L. Fouilland-Paille, S. Ettaqi, S. Benayoun and J. J. Hantapergue, “Structural and Mechanical Characterization of Ti/TiC Cermet Coatings Synthesized by Laser Melting”, Surface Coat. Tech., 88, (1996), pp.204-211.
3. H. Z. Ye, R. Liu, D. Y. Li and R. Eadie, “Development of a New Wear-resistant Material: TiC/TiNi Composite”, Scripta Mater., 41, (1999) pp.1039-1045.
4. M. Vardavoulias, “Role of Hard Second Phases in the Mild Oxidational Wear Mechanism of High-speed Steel-based Materials”, Wear, 173, (1994), pp.105-114.
5. J. M. Durand, M. Vardavoulias and M. Jeandin, “Role of Reinforcing Ceramic Particles in the Wear Behaviour of Polymer-based Model Composites”, Wear, 181-183, (1995), pp.833-839.
6. T. Z. Kattamis and T. Suganuma, “Solidification Processing and Tribological Behavior of Particulate TiC-ferrous Matrix Composites”, Mater. Sci. Eng. A, 128, (1990), pp.241-252.
7. G. P. Tilly, “A Two Mechanism of Ductile Erosion”, Wear, 23, (1973), pp.87-96.
8. B. A. Lindsley and A. R. Marder, “ The Effect of Velocity on the Solid Particle Erosion Rate of Alloys”, Wear, 225-229, (1999), pp.510-516.
9. 高橋 涉,岡田 稔,志田善明,中西睦夫,〝チタソヘの炭化物による耐磨耗性改善〞,鉄と鋼,第8號,(1991),124-131頁。
10. A. Hirose, D. Ozamoto, R. Aoki and K. F. Kobayashi, “Formation of Ceramic Particulate Reinforced TiAl Composites by Plasma Arc Processing”, Z. Metallkd, 86, (1995), pp.580-584.
11. Metals Handbook, 9th ed., ASM, 13, (1988), pp.658-669.
12. 中村宇一,〝粉体肉盛溶接技術基礎應用〞,溶接技術,8月號,(1986),45-50頁。
13. 加藤喜久,竹內宥公,〝PPW法による表面硬度處理とその適用〞,特殊鋼,35卷,12號,(1986),58-63頁。
14. 何冠儀,〝商業用純鈦在不同雷射銲接條件下連結強度之研究〞,中山醫學大學牙科材料研究所碩士論文,民國91年。
15. I. J. Polmear, “Light Alloys: Metallurgy of the Light Metals”, Edward Arnold Ltd., (1981), Ch6.
16. Welding Handbook, 6th ed., AWS, 1, (1968), Ch9.
17. E. Craig, “The Plasma Arc Process- A Review”, Welding J. 67, (1988), pp. 19-25.
18. M. Hur, T. H. Hwang, W. T. Ju, C. M. Lee and S. H. Hong, “Numerical Analysis and Experiments on Transferred Plasma Torches for Finding Appropriate Operating Conditions and Electrode Configuration for a Waste Melting Process”, Thin Solid Films, 390, (2001), pp.186-191.
19. A. Hasui, E. Kasahara and H. Taguchi, “Studies on Plasma Welding”, Trans. National Resaerch Institute for Metals, (1969), pp.65-72.
20. 富田友樹,高谷泰之,原田良夫,〝プラズマ粉体肉盛溶接法による金属表面の複合合金化〞,日本金属學會會報,31卷,12號,(1992),1056-1063頁。
21. 陳偉聲,〝轉移式電漿電弧熔解法被覆鈷基超合金於球墨鑄鐵基材之複合特性研究〞,國立成功大學材料科學及工程研究所博士論文,民國85年1月。
22. L. Bourithis, A. Milonas and G. D. Papadimitriou, “Plasma Transferred Arc Surface Alloying of a Construction Steel to Produce a Metal Matrix Composite Tool Steel with TiC as Reinforcing Particles”, Surface Coat. Tech., 165, (2003), pp.286-295.
23. L. Bourithis and G. D. Papadimitriou, “Synthesizing a Class “M” High Speed Steel on the Surface of a Plain Steel Using the Plasma Transferred Arc (PTA) Alloying Technique: Microstructural and Wear Properties”, Mater. Sci. Eng. A, 361, (2003), pp.165-172.
24. J. N. Aoh and J. C. Chen, “On the Wear Characteristics of Cobalt-based Hardfacing Layer After Thermal Fatigue and Oxidation”, Wear, 250, (2001), pp.611-620
25. 林宏茂,〝轉移式電漿電弧被覆鈷基超合金之磨耗特性研究〞,國立成功大學材料科學及工程研究所碩士論文,民國87年6月。
26. R. L. Deuis, C. Subramanian and J. M. Yellup, “Three-body Abrasive Wear of Composite Coatings in Dry and Wet Environments”, Wear, 214, (1998), pp.112-130.
27. R. L. Deuis, C. Subramanian and J. M. Yellup, “Metal-matrix Compostie Coating by PTA Surfacing”, Composites Sci. Tech., 58, (1998), pp.299-309.
28. R. L. Deuis, J. V. Bee and C. Subramanian, “Investigation of Interfacial Structures of Plasma Transferred Arc Deposited Aluminum Based Composites by Transmission Electron Microscopy”, Scripta Mater., 37, (1997), pp. 721-727.
29. 清水茂樹、永井健介、松田福久、中田一博,〝プラズマ粉体肉盛溶接法によるアルミニウム合金表面ヘの炭化物複合化〞,溶接技術,特集號,(1989),761-767頁。
30. K. Shimizu, T. Noguchi, T. Kamada and H. Takasaki, “Progress of Erosive Wear in Spheroidal Graphite Cast Iron”, Wear, 198, (1996), pp.150-155.
31. R. E. Winter and I. M. Hutchings, “The Role of Adiabatic Shear in Solid Particle Erosion”, Wear, 34, (1975), pp.141-148.
32. G. P. Tilly, “Erosion Caused by Impact of Solid Particles”, Treatise on Materials Science and Technology, 13th ed., D. Scott, Academic Press, New York, (1979), pp.287-319.
33. A. Misra and I. Finnie, “On the Size in Abrasive and Erosion Wear”, Wear, 65, (1981), pp.359-373.
34. D. F. Wang and Z. Y. Mao, “A Study for Erosion of Si3N4 Ceramics by impact of Solid Particles”, Wear, 199, (1996), pp.283-286.
35. K. H. Zum Gahr, “Microstructure and Wear of Materials”, Elsevier, Amsterdam, (1987), 1st ed., pp.531-553.
36. Y. Meged, “Modeling of the Initial Stage in Vibratory Cavitation Erosion Tests by use of a Weibull Distribution”, Wear, 253, (2002), pp.914-923.
37. A. V. Levy, “ The Platelet Mechanism of Erosion of Ductile Metals”, Wear, 108, (1986), pp.1-21.
38. Y. I. Oka, H. Ohnogi, T. Hosokawa and M. Matsumura, “The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact”, Wear, 203-204, (1997), pp.573-579.
39. W. H. Jennings, W. J. Head and C. R. Manning, Jr., “A Mechanistic Model for the Prediction of Ductile Erosion”, Wear, 40, (1976), pp.93-112.
40. I. Finnie, G. R. Stevick and J. R. Ridgely, “The Influence of Impingement Angle on the Erosion of Ductile Metals by Angular Abrasive Particles”, Wear, 152, (1992), pp.91-99.
41. R. G. Wellman and C. Allen, “The Effects of Angle of Impact and Material Properties on the Erosion Rates of Ceramics”, Wear, 186-187, (1995), pp.117-122.
42. J. L. Routbort, R. O. Scattergood and A. P. L. Turner, “The Erosion of Reaction-Bonded SiC”, Wear, 59, (1980), pp.363-375.
43. D. Chen, M. Sarumi, S.T. S. Al-Hassani, S. Gan, and Z. Yin, “A Model for Erosion at Normal Impact”, Wear, 205, (1997), pp.32-39.
44. A. V. Levy and B. Wang, “Erosion of Hard Material Coating Systems”, Wear, 121, (1988), pp.325-346.
45. W. F. Adler, “Analytical Modeling of Multiple Particle Impacts on Brittle Materials”, Wear, 37, (1976), pp.353-364.
46. R. G. Wellman and C. Allen, “The Effect of Angle of Impact and Material Properties on the Erosion Rates of Ceramics”, Wear, 186-187, (1995), pp.117-122.
47. L. K. Hien and P. G. Shewmon, “Effects of Hardness on the Solid Particle Erosion Mechanisms in AISI 1060 Steel”, Wear, 89, (1983), pp.291-302.
48. A. Magnee, Generalized Law of Erosion: “Application to Various Alloys and Intermetallics”, Wear, 181-183, (1995), pp.500-510.
49. W. S. Dai, L. H. Chen and T. S. Lui, “ SiO2 Particle Erosion of Spheroidal Graphite Cast Iron after Surface Remelting by the Plasma Transferred Arc Process”, Wear, 248, (2001), pp.201-210.
50. F. Y. Hung, L. H. Chen and T. S. Lui, “The Microstructural Effects on Tensile Properties and Erosion Wear Resistance in Upper Bainitic ADI Related to Variation in Silicon Content”, Mater. Trans., 43, (2002), pp.1748-1757.
51. A. V. Levy, “The Platelet Mechanism of Erosion of Ductile Metals”, Wear, 108, (1986), pp.1-21.
52. B. Stanisa and V. Ivusic, “Erosion Behavior and Mechanisms for Steam Turbine Rotor Blades”, Wear, 186-187, (1995), pp.395-400.
53. M. G. Gee, R.H. Gee and I. McNaught, “Stepwise Erosion as a Method for Determining the Mechanisms of Wear in Gas Borne Particulate Erosion”, Wear, 255, (2003), pp.44-54.
54. M. M. Stack and D. Pena, “Solid Particle Erosion of Ni-Cr/WC Metal Matrix Composites at Elevated Temperatures: Construction of Erosion Mechanism and Process Control Maps”, Wear, 203-204, (1997), pp.489-497.
55. 洪飛義,〝矽含量及基地組織對球墨鑄鐵顆粒沖蝕磨耗行為之影響〞,國立成功大學材料科學及工程研究所博士論文,民國91年9月。
56. H. Reshetnyak and J. Kuybarsepp, “Mechanical Properties of Hard Metals and Their Erosive Wear Resistance”, Wear, 177, (1994), pp.185-193.
57. S. M. Wiederhorn and B. J. Hockey, “Effect of Material Parameters on the Erosion Resistance of Brittle Materials”, J. Mater. Sci., 18, (1983), pp.766-780.
58. K. Adachi, K. Kato and N. Chen, “Wear Map of Ceramics”, Wear of Materials-1997, ASME, (1997), pp.156-168.
59. H. Reshetnyak and J. Kuybarsepp, “Mechanical Properties of Hard Metals and Their Erosive Wear Resistance”, Wear, 177, (1994), pp.185-193.
60. Y. I. Oka, M. Matsumura and T. Kawabata, “Relationship Between Surface Hardness and Erosion Damage Caused by Solid Particle Impact”, Wear, 162-164, (1993), pp.688-695.
61. ASM Handbook, 10th ed., 3, (1992)pp.2.307.
62. T. B. Massalski, “Binary Alloy phase diagrams”, ASM, (1986), pp.333.
63. 材料手冊編審委員會〝材料手冊:非鐵金屬材料〞,中國材料科學學會,第二版,民國72年,第三章。
64. J. J. Margrave, “The Refractory Carbides”, 2, (1067), Ch.1.&Ch.5.
65. R. Freer, “The Physics and Chemistry of Carbides, Nitrides, and Borides”, Kluwer Academic Publishers, Boston, (1989), pp.216
66. W. Jost “Diffusion in solids, liquids, gases”, Academic Press, New York, (1960) pp.69-75.
67. F. Duflos and J. F. Stohr, “Comparison of the Quench Rates Attained in Gas Atomized Powders and Melt-spum Ribbons of Co and Ni Base Superalloys: Influence on Resulting Microstructures”, Rapid Solidified Amorphous and Crystalline Alloys, Mater. Reas.. Roc. Symp. Proc. 8, (1982), pp.167-171.
68. 莊朝棟,〝鑄鐵的電漿轉移電弧表面重熔之凝固組織研究〞,國立成功大學材料科學及工程研究所碩士論文,民國83年6月。
69. W. F. Savage, E. F. Nipper and J. S. Erickson, “Solidification Mechanisms in Fusion Welds”, Welding J., (1976), pp.213-221.