簡易檢索 / 詳目顯示

研究生: 林岱瑩
Lin, Dai-Ying
論文名稱: 以發煙二氧化矽製備偏矽酸鋰觸媒於催化廢食用油轉酯化反應之研究
Study on Transesterification Reaction of Waste Cooking Oil by Using Lithium Metasilicate Prepared from Fumed-silica
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 137
中文關鍵詞: 水熱合成法生質柴油偏矽酸鋰廢食用油轉酯化反應
外文關鍵詞: Biodiesel, Lithium metasilicate, Transesterification, Waste cooking oil
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,能源的消耗量也與日俱增,其中以化石燃料的消耗最多,然而化石燃料屬於非再生能源,無節制的消耗未來將會造成能源缺乏。此外,燃燒化石燃料也引發空氣汙染與溫室效應等環境問題,因此尋求乾淨、低汙染的可再生能源已成為重要的議題。生質能具有低二氧化碳淨排放量、生物可降解等特性,因此愈來愈受到重視,其中生質柴油為能替代石化柴油的能源,其物性和化性與石化柴油類似,目前主要是以轉酯化反應,將植物或動物油轉化而得。轉酯化反應進行時,常加入適當的催化劑加快反應速率,其中異相觸媒因分離容易且回收方便,在反應後處理階段較勻相觸媒具便利性及經濟性,因此本實驗選用異相觸媒進行轉酯化反應。
    本實驗主要研究以發煙二氧化矽為原料,利用水熱合成法來製備偏矽酸鋰觸媒,催化廢食用油轉酯化反應,並探討反應參數(如醇油比、反應溫度、觸媒添加量等)對催化效果的影響,找出反應最佳化的條件。此外,亦探討反應後生質柴油之物化性質及觸媒可重複回收之耐用性,並和商用偏矽酸鋰進行比較。最後和文獻進行成本上的比較,期望以較低成本製備出生質柴油。
    由實驗結果可知,以自行合成之偏矽酸鋰直接催化廢食用油即有不錯的效果,在醇油莫耳比54、反應溫度65oC、添加10 wt%的觸媒反應4小時,可達90%的產率,較商用偏矽酸鋰(82%)效果佳,而反應得到之生質柴油,其酸價、密度、動黏度及碘價皆在美國物質試驗標準(ASTM D6751)及歐盟生質柴油燃料標準(EN 1421)的範圍內。在成本方面,與文獻之以偏矽酸鋰催化大豆油轉酯化反應比較,可知由於本研究能大幅縮短觸媒合成時間,且使用成本較低之廢食用油,因此能以較低的成本製備生質柴油。最後觸媒耐用性部分,由於反應後,油料及皂化產物之覆蓋,使觸媒活性下降,反應至第6次產率達38%,然而相較於商用偏矽酸鋰反應至第4次達20%的產率,本研究自行合成之偏矽酸鋰耐用性較商用偏矽酸鋰佳。

    In this study, lithium metasilicate (Li2SiO3) prepared from fumed silica was used as a heterogeneous base catalyst to catalyze the transesterification reaction of waste cooking oil (WCO) in excess methanol for biodiesel production. Waste cooking oil collected from the local restaurant contained an acid value measured at 1.91 mg KOH/g oil. Li2SiO3 catalyst was synthesized via a hydrothermal process by using fumed silica as a starting material with an addition of LiOH(aq) at 150oC for 2 h. After the hydrothermal reaction, the products were washed thoroughly with de-ionized water, dried in the oven, and then calcined at 500oC in the air for 6 h. The catalysts were characterized by XRD, TGA, FTIR, SEM, BET and ssNMR. Its basicity was also measured. The factors influencing the yield of biodiesel such as reaction temperature, reaction time, alcohol quantity, and catalyst amount were studied. The yield of biodiesel achieved 90% under the following optimal conditions: methanol to oil molar ratio 54:1, catalyst amount 10 wt% at 65oC for 4 h. After reused of lithium metasilicate for 5 cycles, the yield could still reach 48%. According to Arrhenius equation, the activation energy of transesterification reaction using lithium metasilicate is near 75.50 kJ/mol. Furthermore, the properties of biodiesel such as acid value, density and viscosity were found to be within the limits of ASTM standards.

    摘要 I Abstract II 致謝 XIV 目錄 XV 圖目錄 XX 表目錄 XXIII 第一章 緒論 1 1-1 前言 1 第二章 文獻回顧 5 2-1 生質柴油 5 2-1-1 生質柴油之歷史發展 5 2-1-2 生質柴油之原料來源 7 2-1-2-1 植物油 8 2-1-2-2 動物油與廢食用油 8 2-1-3 生質柴油之生產方式 9 2-1-3-1 熱裂解法 (Pyrolysis) 10 2-1-3-2 微乳化法 (Micro-emulsion) 11 2-1-3-3 轉酯化法 (Transesterification) 11 2-1-4 生質柴油與柴油之特性比較 14 2-1-5 國內生質柴油之發展 18 2-2 生質柴油產率之影響參數 19 2-2-1 醇類添加量 19 2-2-2 反應時間 20 2-2-3 反應溫度 20 2-2-4 觸媒濃度 20 2-3 轉酯化反應應用之觸媒 21 2-3-1 勻相觸媒 22 2-3-1-1 勻相鹼性觸媒 22 2-3-1-2 勻相酸性觸媒 24 2-3-2 異相觸媒 26 2-3-2-1 異相鹼性觸媒 26 2-3-2-2 異相酸性觸媒 27 2-3-3 酵素觸媒 27 2-4 偏矽酸鋰觸媒 30 2-4-1 矽酸鹽類簡介 30 2-4-2 偏矽酸鋰觸媒之特性與應用 31 2-5 實驗室於生質柴油製備之回顧 33 2-5-1 製備方式 33 2-5-1-1 轉酯化反應 33 2-5-1-2 二階段酯化-轉酯化反應 34 2-5-2 反應觸媒種類 34 2-5-2-1 Y型沸石 34 2-5-2-2 LTA型沸石 35 2-5-2-3 Beta型沸石 35 2-5-2-4 MCM-22型沸石 36 2-5-2-5 CAN型沸石 36 2-5-2-6 ANA型沸石 37 2-5-2-7 H-ZSM5型沸石 38 2-5-2-8 全矽Beta型沸石 38 2-5-2-9 偏矽酸鋰 (Li2SiO3)觸媒 39 第三章 實驗 43 3-1 研究架構及流程 43 3-2 實驗藥品 44 3-3實驗設備 47 3-4 實驗方法 48 3-4-1 偏矽酸鋰觸媒合成 48 3-4-2 廢食用油前處理 48 3-4-3 轉酯化反應 48 3-4-4 觸媒回收再利用 49 3-4-5 觸媒鑑定與分析 50 3-4-5-1 X光繞射分析儀 (X-ray Diffraction Analyzer, XRD) 50 3-4-5-2 熱重分析儀 (Thermogravimetric Analyzer, TGA) 50 3-4-5-3 傅立葉紅外線光譜分析儀 (Fourier transform infrared, FT-IR) 51 3-4-5-4 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 51 3-4-5-5比表面積儀 (Specific Surface Area & Pore Size Distribution Analyzer, BET) 52 3-4-5-6 觸媒鹼度測試 52 3-4-5-7固態核磁共振儀 (Solid-state Nuclear Magnetic Resonance, ssNMR) 53 3-4-6 油料性質分析 54 3-4-6-1 氣相層析儀 (Gas Chromatography, GC) 54 3-4-6-2 脂肪酸甲酯檢量線製作與產率分析 55 3-4-6-3 油料酸價測試 55 3-6-6-4 油料與生質柴油之密度測試 56 3-6-6-5 油料與生質柴油之動黏度測試 56 3-6-6-6 油料與生質柴油之碘價測試 57 3-4-6-7 感應耦合電漿原子發射光譜儀 (Inductively Coupled Plasma- Optical Emission Spectrometer, ICP-OES) 58 3-4-7 實驗成本評估 58 第四章 結果與討論 59 4-1 偏矽酸鋰觸媒之合成與鑑定 59 4-1-1 不同氫氧化鋰濃度對合成偏矽酸鋰之影響 59 4-1-2 不同合成反應時間對合成偏矽酸鋰之影響 61 4-1-2-1 XRD晶相分析 62 4-1-2-2 鹼度測試 64 4-1-2-3 比表面積比較 64 4-1-2-4 反應催化效果比較 65 4-1-3 自行合成及商用偏矽酸鋰之XRD分析 66 4-1-4 自行合成及商用偏矽酸鋰之TGA分析 67 4-1-5 自行合成及商用偏矽酸鋰之BET分析 68 4-1-6 自行合成及商用偏矽酸鋰之SEM-EDS分析 71 4-1-7 自行合成及商用偏矽酸鋰之FT-IR分析 72 4-1-8 自行合成及商用偏矽酸鋰之ssNMR分析 74 4-1-9 自行合成及商用偏矽酸鋰之鹼度分析 75 4-2 自行合成偏矽酸鋰於轉酯化反應參數探討 76 4-2-1 不同醇油比對轉酯化反應之影響 76 4-2-2 不同溫度對轉酯化反應之影響 77 4-2-3 添加共溶劑對轉酯化反應之影響 82 4-2-4 不同觸媒添加量對轉酯化反應之影響 83 4-3 轉酯化反應參數最佳化之比較 85 4-3-1 不同偏矽酸鋰來源於最佳反應條件下之比較 85 4-3-2 廢食用油與過期大豆油於最佳反應條件下之比較 86 4-3-3 製程經濟比較 88 4-4 原料油及生質柴油性質比較 92 4-4-1轉酯化反應非均相產物分析 92 4-4-1-1 非均相產物之TGA分析 93 4-4-1-2 非勻相產物之FT-IR分析 96 4-4-2 大豆油、廢食用油及生質柴油之性質分析與比較 99 4-4-2-1 原料油與生質柴油FT-IR分析 99 4-4-2-1 不同油料來源對生質柴油產率及酸價之影響 102 4-4-2-2 不同油料來源對生質柴油密度、動黏度及碘價之影響 102 4-5 偏矽酸鋰觸媒於催化廢食用油之回收再利用測試 104 4-5-1 自行合成與商用偏矽酸鋰耐用性測試 104 4-5-2 反應前後觸媒晶型結構分析比較 106 4-5-3 反應前後觸媒TGA、FT-IR及ssNMR分析 111 4-5-4 反應前後觸媒BET及鹼度分析 117 第五章 結論與未來展望 121 5-1 結論 121 5-2 未來展望 122 參考文獻 123 附錄 134

    Alemi, A., Khademinia, S., Sertkol, M. Part III: lithium metasilicate(Li2SiO3)—mild condition hydrothermal synthesis, characterization and optical properties. International Nano Letters, 5(2), 77-83 (2015)

    Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16(4), 2070-2093 (2012)

    Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., Sulaiman, N. M. N. The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14-26 (2013)

    Avhad, M. R., Marchetti, J. M. Innovation in solid heterogeneous catalysis for the generation of economically viable and ecofriendly biodiesel: A review. Catalysis Reviews, 58(2), 157-208 (2015)

    Bajpai, S., Sahoo, P. K., Das, L. M. Feasibility of blending karanja vegetable oil in petro-diesel and utilization in a direct injection diesel engine. Fuel, 88(4), 705-711 (2009)

    Balat, M., Balat, H.. A critical review of bio-diesel as a vehicular fuel. Energy Conversion and Management, 49(10), 2727-2741 (2008)

    Birla, A., Singh, B., Upadhyay, S. N., Sharma, Y. C. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour Technol, 106, 95-100 (2012)

    Cao, F., Chen, Y., Zhai, F., Li, J., Wang, J., Wang, X., Zhu, W. Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid. Biotechnol Bioeng, 101(1), 93-100 (2008)

    Chen, KT., Wang, JX., Dai, YM., Wang, PH., Liou, CY., Nien, CW., Wu, JS., Chen, CC. Rice husk ash as a catalyst precursor for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 44(4), 622-629 (2013)

    Coleman, N. J., Hurt, A. P., Raza, A. Hydrothermal synthesis of lithium silicate from waste glass. A preliminary study. Physicochem. Probl. Miner. Process., 51(2), 685-694 (2015)

    Correia, L. M., Saboya, R. M. A., Sousa Campelo, N., Cecilia, J. A., Rodríguez-Castellón, E., Cavalcante, C. L., Vieira, R. S. Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresource Technology, 151, 207-213 (2014)

    Cruz, D., Bulbulian, S., Lima, E., Pfeiffer, H. Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3). Journal of Solid State Chemistry, 179(3): 909-916 (2006)

    Dai, Y.-M., Wu, J.-S., Chen, C.-C., & Chen, K.-T. Evaluating the optimum operating parameters on transesterification reaction for biodiesel production over a LiAlO2 catalyst. Chemical Engineering Journal, 280, 370-376 (2015)

    Eevera, T., Rajendran, K., Saradha, S. Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renewable Energy, 34(3), 762-765 (2009)

    El Shimi, H. I., Attia, N. K., El Diwani, G. I., El Sheltawy, S. T. Investigation of silicates as a catalyst in biodiesel production: A review. International Journal of Energy Research, 40(13), 1743-1756 (2016)

    Encinar, J. M., González, J. F., Rodríguez, J. J., Tejedor, A. Biodiesel Fuels from Vegetable Oils:  Transesterification of Cynara cardunculus L. Oils with Ethanol. Energy & Fuels, 16(2), 443-450 (2002)

    Fuss, T., Moguš-Milanković, A., Ray, C. S., Lesher, C. E., Youngman, R., Day, D. E. Ex situ XRD, TEM, IR, Raman and NMR spectroscopy of crystallization of lithium disilicate glass at high pressure. Journal of Non-Crystalline Solids. 352(38): 4101-4111 (2006)

    Jiang, W., Niu, X., Yuan, F., Zhu, Y., Fu, H. Preparation of KF–La2O2CO3 solid base catalysts and their excellent catalytic activities for transesterification of tributyrin with methanol. Catalysis Science & Technology, 4(9), 2957 (2014)

    Kouzu, M., Kasuno, T., Tajika, M., Yamanaka, S., Hidaka, J. Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol. Applied Catalysis A: General, 334(1), 357-365 (2008)

    Kouzu, M., Tsunomori, M., Yamanaka, S., & Hidaka, J. Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel. Advanced Powder Technology, 21(4), 488-494 (2010)

    Kozliak, E., Mota, R., Rodriguez, D., Overby, P., Kubátová, A., Stahl, D., Seames, W. Non-catalytic cracking of jojoba oil to produce fuel and chemical by-products. Industrial Crops and Products, 43, 386-392 (2013).

    Leofanti, G., Padovan, M., Tozzola, G., Venturelli, B. Surface area and pore texture of catalysts. Catalysis Today, 41(1–3), 207-219 (1998)

    Leung, D. Y. C., Wu, X., Leung, M. K. H. A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083-1095 (2010)

    López Granados, M., Alba-Rubio, A. C., Vila, F., Martín Alonso, D., & Mariscal, R. Surface chemical promotion of Ca oxide catalysts in biodiesel production reaction by the addition of monoglycerides, diglycerides and glycerol. Journal of Catalysis, 276(2), 229-236 (2010)

    López Granados, M., Martín Alonso, D., Alba-Rubio, A. C., Mariscal, R., Ojeda, M., Brettes, P. Transesterification of Triglycerides by CaO: Increase of the Reaction Rate by Biodiesel Addition. Energy & Fuels, 23(4), 2259-2263 (2009)

    Lim, S., Teong, L. K. Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Renewable and Sustainable Energy Reviews, 14(3), 938-954 (2010)

    Lotero, E., Liu, Y., Lopez, D. E., Suwannakarn, K., Bruce, D. A., Goodwin, J. G. Synthesis of Biodiesel via Acid Catalysis. Industrial & Engineering Chemistry Research, 44(14), 5353-5363 (2005)

    Lourinho, G., Brito, P. Advanced biodiesel production technologies: novel developments. Reviews in Environmental Science and Bio/Technology, 14(2), 287-316 (2015).

    Mandolesi de Araujuo, C.D., Cristina de Andrade, C., Souza e Silva, E.D., Antonio Dupas, F. Biodiesel production from used cooking oil: A review. Renewable and Sustain Energy Reviews, 27, 445-452 (2013)

    Mardhiah, H. H., Ong, H. C., Masjuki, H. H., Lim, S., Lee, H. V. A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and Sustainable Energy Reviews, 67, 1225-1236 (2017)

    Meng, X., Chen, G., Wang, Y. Biodiesel production from waste cooking oil via alkali catalyst and its engine test. Fuel Processing Technology, 89(9), 851-857 (2008)

    Misra, R. D., Murthy, M. S. Performance, emission and combustion evaluation of soapnut oil–diesel blends in a compression ignition engine. Fuel, 90(7), 2514-2518 (2011).

    Musa, I. A. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egyptian Journal of Petroleum, 25(1), 21-31 (2016)

    Noureddini, H., Zhu, D. Kinetics of transesterification of soybean oil. Journal of the American Oil Chemists’ Society, 74(11), 1457-1463 (1997)

    Ortiz-Landeros, J., Contreras-García, M. E., Gómez-Yáñez, C., Pfeiffer, H. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: (I) Synthesis, structural and microstructural characterization. Journal of Solid State Chemistry, 184(5), 1304-1311 (2011)

    Ortiz-Landeros, J., Gómez-Yáñez, C., Pfeiffer, H. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: II—Textural analysis and CO2–H2O sorption evaluation. Journal of Solid State Chemistry. 184(8), 2257-2262 (2011)

    Pfeiffer, H., Ortiz-Landeros, J., López-Juárez, R., Romero, I., Balmori-Ramírez, H., Gomez-Yañez, C. Li2SiO3 fast microwave-assisted hydrothermal synthesis and evaluation of its water vapor and CO2 absorption Vol. 24 (2015)

    Phan, A. N., Phan, T. M. Biodiesel production from waste cooking oils. Fuel, 87(17-18), 3490-3496 (2008)

    Qi, D. H., Bae, C., Feng, Y. M., Jia, C. C., Bian, Y. Z. Combustion and emission characteristics of a direct injection compression ignition engine using rapeseed oil based micro-emulsions. Fuel, 107, 570-577 (2013)

    Rahul, R., Satyarthi, J. K., Srinivas, D. Lanthanum and zinc incorporated hydrotalcites as solid base catalysts for biodiesel and biolubricants production. Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 50(8), 1017-1025 (2011)

    Rakopoulos, D. C., Rakopoulos, C. D., Giakoumis, E. G., Dimaratos, A. M., Founti, M. A. Comparative environmental behavior of bus engine operating on blends of diesel fuel with four straight vegetable oils of Greek origin: Sunflower, cottonseed, corn and olive. Fuel, 90(11), 3439-3446 (2011)

    Ruhul, A. M., Kalam, M. A., Masjuki, H. H., Fattah, I. M. R., Reham, S. S., Rashed, M. M. State of the art of biodiesel production processes: a review of the heterogeneous catalyst. RSC Advances, 5(122), 101023-101044 (2015)

    Sajjadi, B., Raman, A. A. A., Arandiyan, H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renewable and Sustainable Energy Reviews, 63, 62-92 (2016)

    Serra, J., González, P., Liste, S., Serra, C., Chiussi, S., León, B., Pérez–Amor, M., Ylänen, HO., Hupa, M. FTIR and XPS studies of bioactive silica based glasses. Journal of Non-Crystalline Solids, 332(1-3), 20-27 (2003)

    Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T. Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984) Pure and Applied Chemistry, 57 603-619 (1985)

    Singh, V., Yadav, M., Sharma, Y. C. Effect of co-solvent on biodiesel production using calcium aluminium oxide as a reusable catalyst and waste vegetable oil. Fuel, 203, 360-369 (2017)

    Smith, R. M. Chemical process: design and integration, John Wiley & Sons, New Jersey, 186-200 (2005)

    Talebian-Kiakalaieh, A., Amin, N. A. S., Mazaheri, H. A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683-710 (2013)

    Tang, T., Zhang, Z., Meng, J.-B., Luo, D.-L. Synthesis and characterization of lithium silicate powders. Fusion Engineering and Design, 84(12), 2124-2130 (2009)

    Verma, P., Sharma, M. P. Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063-1071 (2016)

    Wang, J. X., Chen, K. T., Huang, S. T., Chen, C. C. Application of Li2SiO3 as a heterogeneous catalyst in the production of biodiesel from soybean oil. Chinese Chemical Letters, 22(11), 1363-1366 (2011)

    Zhang, B., Nieuwoudt, M., Easteal, A. J. Sol–Gel Route to Nanocrystalline Lithium Metasilicate Particles. Journal of the American Ceramic Society, 91(6), 1927-1932 (2008)

    Zahoor, U., Mohamad, A. B., Zakaria, M. Characterization of Waste Palm Cooking Oil for Biodiesel Production. International Journal of Chemical Engineering and Applications, 5(2), 134-137 (2014)

    Zein, E. S., Bayed, M. H., Yousef, A. A. Oleochemicals I: Studies on the preparation and the structure of lithium soaps. Grasas y Aceites, 50(6), 426-434 (1999)

    王祥合. Synthesis of Zeolite MCM-22 for Catalyzed Transesterification of Triglycerides for Biodiesel. 成功大學化工系碩士論文. (2014)

    宋勇徵. 生質柴油之起源. 台肥季刊. (2006)

    李育庭. Study on Mechanism of Transesterification Reaction of Soybean oil by Using Lithium-loaded All-Silica Zeolite BEA. 成功大學化工系碩士論文. (2016)

    周季霖. Study on Catalyzed Transesterification of Soybean Oil with Cancrinite-type Zeolite. 成功大學化工系碩士論文. (2015)

    周昕妤. Transesterification of Triglycerides for Biodiesel Production using Na+ loaded Zeolite Y Catalysts. 成功大學化工系碩士論文. (2012)

    粘志遠. Transesterification for biodiesel production using alkali-loaded Zeolite Y. 成功大學化工系碩士論文. (2013)

    莊地龍. Study on Catalyzed Transesterification of Triglycerides with Ion-Exchanged Zeolite Beta. 成功大學化工系碩士論文. (2014)

    郭致廷. 台灣生質柴油出了什麼問題. 生質能源趨勢. (2014)

    陳文姿. 廢食用油變潔淨能源 環署推100%生質柴油. 環境資訊中心. (2015)

    陳祺凡. Study on Catalyzed Transesterification of Soybean Oil with Anaclime-type Zeolite. 成功大學化工系碩士論文. (2015)

    陳瑩蓁. Study on Catalyzed Transesterification Reaction of Soybean Oil and Waste Cooking Oil over Lithium Metasilicate. 成功大學化工系碩士論文. (2017)

    馮馨潔. Beta型沸石觸媒於三酸甘油酯轉酯化反應以製備生質柴油之研究成功大學化工系碩士論文. (2013)

    鄧進協. Study on biodiesel production by using Amberlite IR-120, zeolite LTA and zeolite CAN catalysts. 成功大學化工系碩士論文. (2013)

    謝志誠. 生質柴油之發展. 生質柴油之技術與文獻探討. (2007a)

    謝志誠. 生質柴油與石化柴油之比較. 生質柴油之技術與文獻探討. (2007b)

    蘇美惠. 從生質柴油推動政策探討我國生質能源產業發展瓶頸. 能源資訊平台. (2016)

    蘇美惠. 全球生質能源產業與技術發展動態與趨勢分析. 能源資訊平台. (2017)

    下載圖示 校內:2023-07-01公開
    校外:2023-07-01公開
    QR CODE